Questions & Discussion on Methodology before we proceed to.....

Innovative

Applications

22

Objectives of SCALE project (2012-2015)

- To develop and pilot a sustainable food chain framework to help food companies optimize the financial, environmental and social costs of each unit of food delivered to the consumer.
- To develop (new) concepts and methods to overcome the lack of integrated optimization across the different decision levels on managing logistic systems.
 - Review sustainability performance indicators
 - Sustainability assessment framework
 - Food &Drink industry and LSPs
 - Optimization model combining AHP, MILP, MCA.

Partners:

• DHL

Cranfield University

http://www.projectscale.eu/

Artois University

Results web-research: sustainability KPIs

Table 2. Overview of key susta	inabilit	y indica	tors of food and drinks compa	anies	
Food Industry			Logistic Service Pro	ovider	
Indicators	#/17	3BL	Indicators	#/19	3BL
Water use (m3)	11	Planet	CO2 emissions transport	5	Planet
Energy use	10	Planet	Fuel use	3	Planet
CO2 emissions (tonnes)	9	Planet	CO2 emissions facilities	3	Planet
Male-female ratio (% of total fte)	8	People	Trained employees (%)	3	People
Total waste production	7	Planet	Absenteeism (%)	3	People
Accidents (Freq. rate)	7	People	Absenteeism (total days)	3	People
Renewable energy (%)	6	Planet			
Recycling & recovery rate	6	Planet			
Absence (%)	6	People			
Trained employees (hours/fte)	5	People			

24

Results: sustainability improvement options

Table 3. Sustainability improvement options (*italic* = requires partner involvement)

Configuration (60%)	Planning & Control	Information (10%)	Organisation (5%)
	(25%)		
Green warehouse	Less material use	Fleet management	Create internal
New truck, LZV	Delivery adjustments	systems	awareness
Vehicle adjustments	Planning adjustments	(new) TMS	Change organisation
Fuel adjustments	Supply adjustments	(new) WMS	structure (QSHE)
Relocation sites	Consolidation	Info sharing with clients	Create external
New production	Collaboration		awareness
equipment	Joint planning		
Network redsign	Client involvement		
Packaging redesign			
Multi-modal network			
New supplier			

5

Supply Chain Network

Factors: decision variables

Two-phase Approach

Indicator weight definition

- Three ways to define the weights of different indicators
 - ✓ Manually Input weights.
 - \checkmark Use a five-star system to rate the importance of each indicator.
 - ✓ Use AHP (Analytic Hierarchy Process) and OWA method. (First phase)

Solution view (geographical)

- Click each site to display the related plan.
- Click the path to display detail transportation plan between sites.

Collaborative transportation management

- Several points of view:
 - Collaboration between shippers: collaborate to propose bundles to a carrier.
 - Collaboration between carriers: collaborate to exchange shipments.
- Several scenarios:
 - Less than truckload: shipment of small quantity of product.
 - -Full truckload: vehicles are fully loaded.

Collaborative transportation management

• Full truckload:

Collaborative warehouse management

Collaboration Interface

• Three different kinds of collaboration provided:

Adding Hubs

• Solution generated:

SALSA Project

Knowledge-based Sustainable vAlue-added food chains: innovative tooLs for monitoring ethical, environmental and Socio-economic impActs and implementing Eu-Latin shared strategies

Overall objective is to contribute to tackle Latin America countries eco-challenges (deforestation, CO2 emission, reduced biodiversity, water-air-soil pollution, reduction in food security) related to farms productions and food chains relationships between Latin America and EU and enhance the food chains value added and competitiveness.

Partners:

• UNIBO (coordinator), UGENT

• FiBL, proQ, CBHU, UFV • EMBRAPA, RTRS, BEMEFA, UNAM, FSLA

New Research Frontiers in Sustainability: SALSA (EU FP7)

Network Configuration:

M. Soysal, J.M. Bloemhof-Ruwaard, J.G.A.J. van der Vorst (2014), Modeling food logistics networks with emission considerations: the case of an international beef supply chain, *International Journal of Production Economics* 152, 57-70.

Multi-Objective Multi-Period Multi-Stage MIP Model- objectives -

Minimize costs

Minimize emissions

Multi-Objective Multi period Multi-stage MIP Model - Constraints (1) -

Supply & Balancod		0.04053497553397	
Supply & Dalanceu	$\sum_{\alpha \in K} \sum_{m \in M_{\alpha}} L_{r_{\alpha}(\alpha,m)} \leq lina \operatorname{cmp}_{0,m}$	$\forall t \in P_s \forall t \in T_s$	<8)
livestock inventories in slaughterhouses	$IL_{ij} + \sum_{i \in F} \sum_{m \in M_{ij}} L_{L^{ij}ijm} - C_{ij} = IL_{ijim}$	$\forall t\in S, \forall t\in T,$	00
Balanced beef inventories	$IB_{b,b} + (C_{b,b} * anight * yield) - \sum_{j \in \mathbb{Z}^{2}} \sum_{m \in M_{a,b}} BT_{b,j,b,m} = IB_{b,b+1},$	$\forall i\in S,\forall i\in T,$	(5)
in slaughterhouses	$IB_{1,k} \leq \sum_{n=0}^{1000} \sum_{i=0}^{1000} \sum_{m=0}^{1000} BT_{i,j,m,m}$	$\forall i \in S, \forall l \in T,$	(0)
with max storage time	$IR_{bd} + \sum_{j \in \mathcal{S}} \sum_{m \in \mathcal{M}_{bd}} RT_{j, cl, m} - \sum_{j \in \mathcal{O}} \sum_{j \in \mathcal{M}_{bd}} RR_{b, j, l, j} = IR_{b, r+1}.$	$\forall i \in P, \forall i \in I,$	(7)
	$IR_{eff} \leq \sum_{n=1}^{n+m+1} \sum_{j=0}^{n+m+1} \sum_{j=0} BS_{i,j;n,j}$.	$\forall i\in P, \forall i\in T,$.00
Demand constraint for Europe	$\sum_{j \in \mathcal{J}} \sum_{f \in \mathcal{T} f \in \Pi_{i,j}} BS_{i,i,i,f} \geq demand_{i,i},$	$\forall i \in C_i \; \forall i \in T_i$	(9)
Flow allocation to full	$L_{ij,i,m} = \sum N_{k,i,j,i,m} + \text{conjuting}_m + LT_{k,i,j,i,m}, \forall (i, j) \in FS_m$	$iii \in T, \forall ni \in M_{nD}$	(10)
and LTF truckloads	$\frac{k \overline{v} b}{M t_{k,k,l,m}} = \sum_{i} N_{k,i,k,l,m} * \operatorname{supporting}_{m_i} + L T_{k,l,k,l,m_i} \qquad \forall (t, f) \in SP_{\theta},$	$\forall t\in T, \forall m\in M_{1,j},$	(11)
	$\sum_{k \in \mathcal{O}} \sum_{m \in \mathcal{M}_{n,i}} \tilde{x}_{k+j,k+m} \leq 1, \qquad \qquad \forall (i,j) \in FS_m$	$\cup SP_n, \forall n \in T$,	(11)
• <u>•</u>	$I.T_{k,i,j,0,m} < \text{coparity}_m \in \mathcal{T}_{k,i,j,l,m}, \qquad \forall (i,j) \in FS_n$	$\cup SP_{\mathrm{in}}, \forall \mathbf{t} \in \mathcal{T}, \forall \mathbf{m} \in M_{k,l}$	$\forall k \in O;$ (13)
WAGENINGEN UNIVERSIT		4.4	4.4
WAGENINGEN		- <i>SA</i> L	SA.

Multi-Objective Multi-Period Multi-Stage IP Model - Constraints - (2)

the comparison of the second s

Calculation of fuel consumption (distance & utilisation rate)

Capacity constraints livestock and beef transportation, slaughtering, stocking at slaughterhouses and ports

$\begin{split} LF_{k,i,j,k,m} &= (Z_{k,i,j,k,m} * empty fiel_{i,j,m}) + ((fall fiel_{i,j,m} - empty fiel_{i,j,m})) \\ &\qquad \forall (i,j) \in FS_n \cup SP_n, \forall i \in I \end{split}$	$tyfuct_{i,j,m}$) = $U_{k,i,j,l,m}$), $t'_i \forall m \in M_{i,j}, \forall k \in O_i$	(15)
$\sum_{i=1}^{L} C_{i,i} \leq slong \hbar(rrop_{i_1}$	$\forall i \in S_i$	(16)
$\sum_{i=1}^{k} I I_{n,i} \leq \text{Involuceop}_{i}$	Wes.	(IT)

WEIGERS, LAR, MET WIE M., MER G. 1141

WESP.

 $\dot{u} \in R$

 $\sum_{i=1}^{k} IB_{i,i} \leq besf toronp_{i},$ $\sum_{i=1}^{k} IB_{i,i} \leq besf toronp_{i},$ $\sum_{i=1}^{k} \sum_{j \in S} \sum_{i \in [M_{i,j}]} MT_{j,i,i,m} \leq transcrip_{i}.$

Min OF1 S.t. Constraints (3) to (26) OF2 <= OF2_max – eps 0 <= eps <= OF2_max – OF2_min

43

44

(10)

(19)

Project Valorization of ByProducts

- 2012-2016
- Exergy-based method to quantify the sustainability of food processes and entire food chains, including waste streams.
- A multi-criteria decision-support system will be developed to evaluate alternative processing methods, logistics, reuse of waste streams or alternative designs of entire food chains, with respect to sustainability and other factors such as costs.
- Mushroom case & Bread case
- After 2014: Dairy case & Biorefinery case

Objectives:

- Quantily environmental performance at chain level
 Optimize production planning decisions
- Optimize production planning o
 Eliminate inefficiencies
- Evaluate opportunities for re-cycling and valorization

Bread case

The mushroom chain in the NL

Terminating production (flushes)

47

Resource use efficiency

Results: optimal production plan

Results: Sensitivity on compost costs

Stochastic applications

- Modelling a stochastic inventory routing problem for perishable products with environmental considerations (Soysal, Bloemhof, Haijema, van der Vorst)
- M. Soysal, J.M. Bloemhof-Ruwaard, T. Bektas, The timedependent two-echelon capacitated vehicle routing problem with environmental considerations, under review with the International Journal of Production Economics, SI on Carbon-efficient Production, Supply Chains and Logistics

Inventory Routing Problem (IRP) Coordination of inventory management and vehicle routing When to deliver to each customer, How much to deliver to each customer each time it is served, How to combine customers into vehicle routes Figure 1: A generic representation of the Inventory Routing Problem

* Traditional assumptions for the IRP

Problem description

- Single vendor, multiple customers
- Homogeneous vehicles at the vendor
- Routes start and end at the vendor's location
- Demand of a customer two or more vehicles
- Demand ~ $N(\mu_{it},\sigma_{it})$
- Inventory at the customers (Fixed shelf life of m≥2 periods)
- The demand should be met with a probability of at least a
- The routes and quantity of shipments in each period such that the total cost comprising routing, inventory and waste costs is minimized

Stochastic chance-constrained programming model (M_{PF})

Minimise Expected inventory cost + Expected waste cost + Fuel cost from transportation operations + Driver cost

Stochastic chance-constrained programming model (M_{PF})

-	the second s
Inventory	/ decisions'
Inventor	, accisions.

- Inventory balance
- Waste calculation
- Service level

Routing decisions:

Flow conservation

Each vehicle at most 1 route per period

- Vehicle capacities
- Eliminate subtours

WAGENINGEN UNIVERSITY
 WADENINGEN

	$X_{i,3}s_i \neq \{0, 3\},$ $F_{i,3}s_i \ge 0,$ $-\infty < I_{i,4} < +\infty,$ $I'_{i,4}W_{i,4} \ge 0,$	$\forall (k, j) \in A, k \in K, l \in T$ $\forall (k, j) \in A, k \in K, k \in T$ $\forall i \in V', l \in T$ $\forall i \in V', l \in T$ $\forall i \in V', l \in T$	(11) (12) (13) (13)	-
9	$\sum_{\substack{p \in V, k \neq r}} P_{1,p,k,r} = \sum_{p \in V, r \neq r} P_{p,k,p} - Q_{1,k,r}$ $P_{1,p,k,r} \leq e X_{r,p,k,r}$	$\forall t \in V', k \in K, t \in T$ $\forall (t, t) \in A, k \in K, t \in T$.	(9)	
	$\sum_{p \in V, p \neq q} X_{1,p,k,p} \leq 1.$	$\forall t \in V, k \in K, t \in T$	291	
	$\sum_{m \in V, \delta(j)}^{\infty} X_{0,2} \mathbf{s}_{(j)} = \sum_{m \in V, \delta(j)}^{\infty} X_{[j,0,0]} p,$	$\forall j \in V', k \in K, t \in T$	(7)	
P_{T}	$(I_{n,t} \ge 0) \ge n$.	$\forall t \in \mathbb{R}^{d}, t \in \mathcal{T}.$. (9)	
20	$V_{0,2} = 0,$	$\forall i \in \mathcal{V}^{\prime}, i \in \{T t < m\}$.010	
70	$ V_{1,i} \ge E[I_{1,i-m+1} - \sum_{i=1}^{n} E[A_{i,i} - \sum_{i=1}^{n-1} E[A_{i,i}] - \sum_{i=1}^{n-1} E[$	$V_i \in V', i \in \{T i \geq m\}$.00	
I^+_{jj}	$\geq E[f_{1,0}]$	$\forall i \in V', t \in T$	100	
89	$ q_{i} = \sum_{k=1}^{1} \sum_{k \in K} \bar{Q}_{1,k,k} + \sum_{k=1}^{L} (\bar{E} [\bar{W}_{1,k}] + \bar{E} [\bar{W}_{1,k}]),$	$\forall v \in V', v \in T'$	(2)	

55

Deterministic approximation $M_{\mbox{\scriptsize PF}}$ and variations

Figure 2: Considered aspects in the model variations

* Simulation model

Base case solution

	M	M_F	M_P	M_{PF}	
KPIs	Optimization&Simulation Results				
Average vehicle load per km (kg\km)	3506.0	3222.1	3493.3	2618.6	
# of vehicles used	7	7	8	8	
Total emissions (kg)	1449.0	1436.5	1898.4	1862.5	
Total driving time (h)	35.6	35.8	46.7	47.6	
Total routing cost (\in)	1321.6	1315.3	1731.1	1718.4	
	C)ptimizat	ion Resul	ts	
Total inventory cost (\in)	904.9	904.9	805.2	792.9	
Total waste cost (\in)	1208.8	1208.8	61.4	61.4	
Total cost (\in)	3435.3	3429.0	2597.6	2572.7	
Anomitic constants Ma		Simulatio	on Results	5	
Average total inventory cost (\in)	895.8	895.8	790.6	774.5	
Average total waste cost (€)	1276.7	1276.7	198.9	198.9	
Average total cost (€)	3494.1	3487.8	2720.6	2691.8	
	and the second se				

Table 4: Summary results for base case

57

Two-echelon distribution systems

- Large trucks → transport freight over long-distances to intermediate depots (satellites) where consolidation takes place,
- Small and environmentally-friendly vehicles → the products are transferred to destination points.

Figure 1: A solution to the 2E-CVRP (Source: Baldacci et al. (2013))

Problem description

- Graph G={V, A}, V={V_0, V_S, V_C}
- Two echelons:
 - First-echelon
 - Second-echelon
 - Congested arcs: in multiple time zones (no limit on #)
 - Non-congested arcs: free flow
- The total freight assigned to each satellite can be split into two or more vehicles,
- Each customer is visited exactly once by a second-echelon route,
- Known nonnegative demand,
- Minimize the total cost of travel and handling,
 - Total cost of travel
 - Driver cost
 - Fuel consumption cost (speed, load and distance) \rightarrow Emissions

WAGENINGEN UNIVERSITY

59

MILP model for the 2E-CVRP - I

Minimise fuel cost for the first-echelon

- + driver cost for the first-echelon
- + handling fee in the satellites
- + fuel cost for the non congested arcs in the second-echelon

+ fuel cost for the congested arcs in the second-echelon if departure and arrival times are in the *same* time zone

+ fuel cost for the congested arcs in the second-echelon, if departure and arrival times are in *different* time zones

+ driver cost for the second-echelon.

MILP model for the 2E-CVRP - II

Constraints, e.g.,

- Flow conservation for each vehicle at each satellite,
- Vehicle visits a satellite at most once,
- Link the delivery from all first-echelon vehicles with the total demand delivered from each satellite,
- Traffic elimination between the satellites,
- Total demand is equal to total amount delivered from all satellites,
- Compute the time zone while departure and arrival,
- Compute the travel time for the congested second-echelon arcs.

• ...

61

Application

- One depot (outside the city), two satellites (boundary of the city) and 16 supermarket branches (customers at the city center),
- Two types of vehicles: large (20 tonnes) and small (10 tonnes),
- Congested arcs based on the traffic data provided by the Google Maps,
- Two-time zones: rush-free flow,
- Three types of speed: outside city (80km/h), rush hour speed (20km/h), free-flow speed (40km/h),
- Random demand,
- The ILOG-OPL development studio and CPLEX 12.2 optimization package,

A computer of Pentium(R) i5 2.4GHz CPU with 3GB memory.

Comparison of the single-echelon and twoechelon distribution systems

Figure 9: The performance of the single-echelon case compared to the base (two-echelon) case

Questions & Discussion

