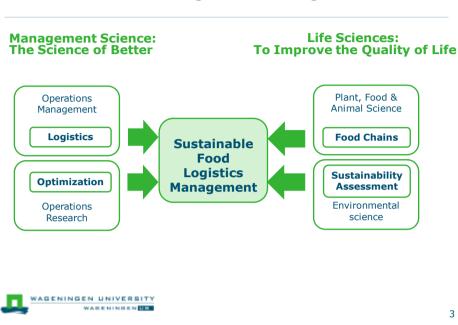
Sustainable Food Logistics Management

Prof. Dr. Jacqueline Bloemhof

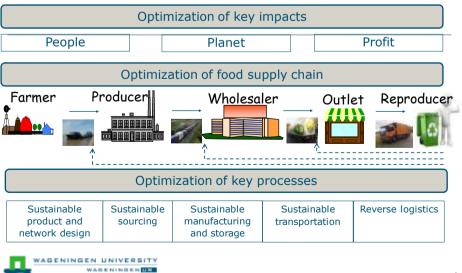
WARENINGENUM

Operations Research & Logistics, Wageningen University, NL July 22, 2014



ESI 2014; Workshop on OR in Agriculture and Forest Management

Content Sustainable (Food) Logistics Management


Concepts/methodology	Applications
1. How to assess Sustainability	1. Projects SCALE/SALSA
2. Trade-off between multiple objectives	2. Projects SALSA/Valorization
3. Closing loops / Circular economy	3. Projects Valorization of By- products
Questions & discussion	4.(Stochastic applications) Questions & discussion

Sustainable Food Logistics Management

Framework Sustainable Food Logistics Management

Sustainability & SCM

Sustainability:

Sustinere (latin): to maintain, endure

Triple Bottom

Line: *Responsible management of environment, economy and society*

Supply

Planning and management of all

Chains/Networks:

activities involved in

5

SFSCM

Lessons learned from literature: Soysal et al. (2012): Review on QM for SFLM

SCM

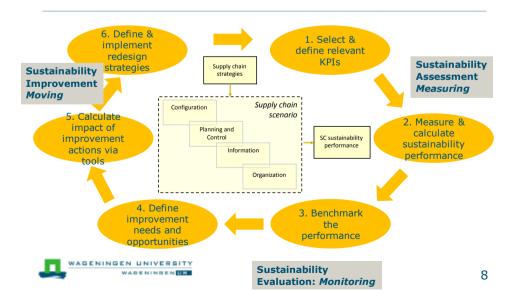
FSCM

• FSC systems: complex

WAGENINGEN UNIVERSITY

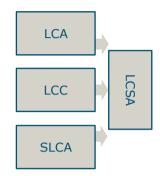
WARENINGENUN

- wide diversity products
- many quality requirements
- Key logistic aims:
 - Cost reduction and improved responsiveness
 - Improved food quality and reduction of food waste
 - Improved sustainability and traceability
- Quantitative modelling challenges:
 - Variabilities, continuous quality degradation, multi indicators, multi objectives, system boundary


Reading materials / main authors

- Ahumada, O., Villalobos, J.R. (2009), Applications or planning models in the agri-food supply chain": a review, EJOR 196, 1: 1-20
- Akkerman, R., Farahani, P., Grunow, M. (2010), Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges, OR Spectrum 32(4), 863-904
- Seuring, S., Muller, M. (2008), From a literature review to a conceptual framework for sustainable supply chain management, J Cleaner Prod 16(15): 1699-1710.
- Seuring, S., (2013), A review of modeling approaches for sustainable supply chain management, DSS 54(4), 1513-1520.
- Brandenburg, M. et al (2014): Quantitative models for sustainable supply chain management: developments and directions, EJOR 233, 299-312

7


Stepwise approach for sustainable supply chain management

From LCA to Life Cycle Sustainability Analysis (LCSA)

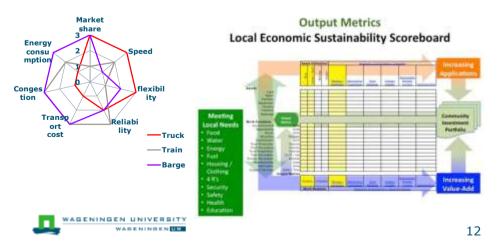
- Transdisciplinary integration framework of models from various disciplines for future LCA
- Covering all three dimensions of sustainability (people, planet, profit)
- Process LCA / EIO-LCA / hybrid LCA / LCC / SLCA
- From product oriented to sector/chain oriented to economy oriented
- Equilibrium models / optimization models / system dynamics models

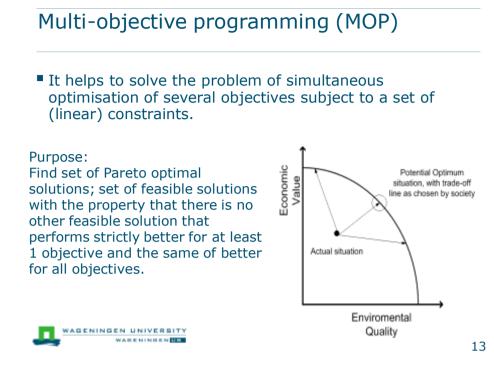
9

Quantifying sustainability

- "Without a quantitative framework, sustainable development lacks a solid foundation on which to advance" (OECD)
- No internationally accepted standard defines what 'sustainable food production' essentially requires (FAO, 2012)
- Neither a commonly accepted set of indicators that have to be taken into account when measuring sustainability performance, nor widely accepted definitions of the minimum requirements that would allow a company to qualify as 'sustainable', exist" (FAO, 2012, p. 9)
- Different (types of) SC players with different roles in # chains, with potentially conflicting strategies have to agree on which metrics to use, with which data and deal with confidentiality issues (Hassini et al., 2012)

Indicators for People, Planet and Profit (3P) (adapted from United Nations)


Social	Environment	Economic
Employment	Food Miles	Material use
Quality of life	Wateruse	Percentage of food lost
Food Safety	Carbon intensity of energy	Transport efficiency
Nutritional value of food	Land usage	Output growth
Fair trade	Use of fertilisers	Added value
Share of food in consumption	Generated waste	Waste recycling/reuse



11

Measuring Sustainability

- Multi-dimensional sustainability standards:
- Scoreboards, Dashboards, Radar diagrams

Exercise: Bread chain

	Flour			Yeast			Salt	
Amount of required material (kg)	1000			23			18	
Suppliers	A	В	С	D	E	F	G	Н
Costs (€/kg)	0.7	0.8	1	1.6	2	2.5	0.75	0.85
CO2 emitted (g/kg)	31	30	29	80	70	60	50	10

Minimize total costs & total CO2 emissions

WAGENINGEN UNIVERSITY WAGENINGEN UN

Exercise: minimize costs

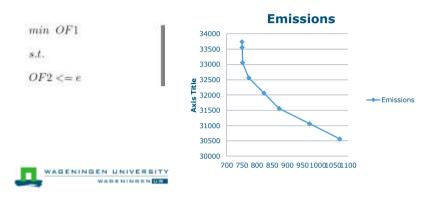
	Flou		Yeast			Salt		
Amount of required material (kg)	1000			23			18	
Suppliers	A	В	С		E	F	G	Н
Costs (€/kg)	0.7	0.8	1	1.6	2	2.5	0.75	0.85
CO2 emitted (g/kg)	31	30	29	80	70	60	50	10

Solution: Xa = 1000, Xd=23, Xg=18:Costs 750.30, Emissions: 33740

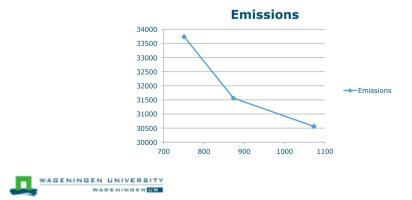
```
WAGENINGEN UNIVERSITY
```

15

Exercise: minimize emissions

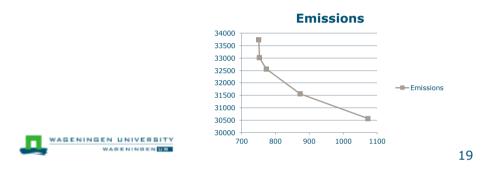

	Flour			Yeast			Salt	
Amount of required material (kg)	1000)		23			18	
Suppliers	А	В	С	D	Е	F	G	Н
Costs (€/kg)	0.7	0.8	1	1.6	2	2.5	0.75	0.85
CO2 emitted (g/kg)	31	30	29	80	70	60	50	10

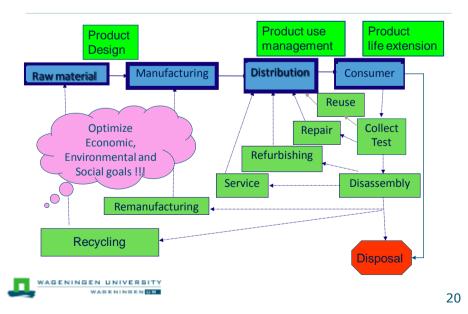
Solution: Xc = 1000, Xf=23, Xh=18:Costs 1072.8, Emissions: 30560

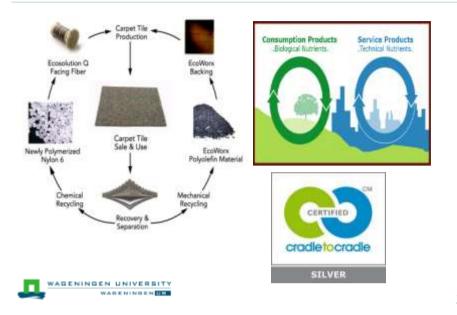

E-Constraint method (Andersson, 1999)

- Optimize one of the objectives while the others are specified as constraints:
- Min costs while emissions <= E_i</p>
- E_i varies between E_min (30560) and E_max (33740)

Weighing method


- Romero, C. Rehman. T. (2003), Ch4, MOP, In: Multiple criteria analysis for agricultural decisions, Elsevier.
- Combine the objectives into one single objective
- Min w1*Z1 + (1-w1)*Z2


17


Multigoal programming

- Min [gap to target_1; gap to target_2]
- Subject to:
 - Sum of all costs G1 = 750 (C_min)
 - Sum of all emissions G2 = 30000 (E_min)

Sustainable Closed Loop Chains

...from linear to circular economy...