

S

Si

Open questions

A mega dairy influences the local rural community:

Roads and water infrastructure

•Land price, and local feed supply

*Local community's tradition concerning animal care

•Odour smell, water contamination,

•Social – are the workers are locals ?

•Branding and social networks ?

•How big do you want to go?

•Environment, Sustainability ?

Further discussion -

halachmi@volcani.agri.gov.il ,0506220112 אילן הלחמי פלאפון

Quantifying the animal behavior

- ► Using sensors to measure
 - physiological,
 - behavioral, and
 - production indicators
- reproductive, health, time budget and performance

The precision farming concept Spreading sensors at key locations of the Farm Process the data, Analysis & reports ('Management by exception', 'individual traits' abnormal behavior etc.) Timely Decision making

Trends in animal husbandry A shift from Small to Large farms with thousands of animals (From Cow Names to Cow Numbers). ► From Family-run to Organizations & Employees

Smart sensing

ALLOW caring for the individual animals"

These trends Require ▶ sensing techniques, and ▶ <u>A management concept</u>

BCS Se ►Regular Model ►Image Pr	nsol camera rocess	a (RGB) ing and sults	Signa (1	Our na stua Fuzzy L Adaptiv meth	2579 3071 3071 3116 2W dent: -Ogic, e
				Contraction of the local division of the loc	
Range	0-1/4	0-1/2	0-3/4	0-1	
Range Training set	0-1/4 53%	0-1/2 82 %	0-3/4 98%	0-1 100%	Journal of Dairy Science
Range Training set Testing set	0-1/4 53% 43%	0-1/2 82 % 72 %	0-3/4 98% 94%	0-1 100% 100%	Journal of Dairy Science

Outiline ► Animal Smart Sensing – needs and theory

Sensor

development

Automatic body condition scoring Automatic cow lameness detection

- Approaching calving sensors
- Automatic early detection of calving diseases
- Real-time milk analyzer with robotic milking
- ▶ What can be learned ?

ni.agri.gov.il

	haladhala			
		Sensitivity	Specificity	Accuracy
Calibration		0.76	0.93	0.90
Verificati	Verification		0.90	0.83
Sensitivity Specificity Accuracy	= ab = ab = ab (corre	ility to detect ility to detect ility to detect ect classifica ISAE, Bet Dagan - 238	t lame anima t not-lame ar t lame and ne tion rate) Asy 2013	ls nimals ot-lame anima

/	<u>NI</u>	<u>jon</u>	ithr	nW		eait	en.	
N=7	44 C	ows		Refer	ence	Score	;	
	2	0.9%		2	3	4	5	
		60.8%	6 1					
s Juni	ē	1	0.25	0.08	0.03	0.01	0	
enter .	ō	2 (0.09	• 0.27 •	0.08	0.03	0.01	
	el S	3	0.0	0.03	0.05	0.02	0.01	
	po	4	0	0.01	0.01	0.02	0	
w/nutrutur	Σ	5	0	0	0	, o'	0.02	
Tom van H	lertem IS	AE, Bet Dagan -	23 May 2013			~	- <i>//</i>	-

Approached calving - two Sensors

Steps, Lying sensor (leg angle)

Decision Model

► Multi Variables Regression ~ "restless"

Applied Results

▶76%
 ▶Maltz and Antler. CIGAR2008 Brazil

Data collection

►4 farms

- 1 x 1100 cows/farm
- 3 x 300 cows/farm

Which model? Logistic regression model Probability of being sick

- ► f(z) = (1 + e z) 1► $z = \beta 0 + \beta 1 x 1 + \beta 2 x 2 + ... + \beta k x k$
- ► Model outcome: 0 Healthy : 1 Ketotic
- ► Variables: Rumination Time, Activity and Milk Yield

lcani.agri.gov.i

114

What about health ?

balachmi@volcani agri gov il

	Day 2	Day 3	Day 4	Day 5	Day 6
Healthy	348±4.4	$393{\pm}4.5$	430±4.7	451±4.9	461±4.8
Light	308±7.8	355 ± 7.5	383±7.4	406±7.0	424±7.
Moderate & Severe	260±20.4	302±18.9	341±20.6	371±19.5	359±22.

		OAcre o Kan Hafa o ^{o Tarra}
Farm	Correct	-
1	83 %	Netanya
	70 %	Tel Aviv:Yafo
3	91 %	Holon LeTsiyon West Bank
4	67 %	Ashkelon O Shemiah Shemiah Shemiah
5	77 %	etvot o Rahat o Yata

		T					ean			
						20201	<u>e es</u> y			
					CALIBRATION					
					Farm 1	Farm 2	Farm 3	Farm 4		
		Farm		N _{tot}	Acc.	Acc.	Acc	Acc.		
		Farm 1	Ket	121	0.74	0.62	per fa	rm		
had	7		Heal	309			Calibra	tion - I		
	ō	Farm 2	Ket	29	0.64	0.77	0.70			
	A		Hea	46			.10	0.00		
-	9	Farm 3	Ket	33	0.69	0.56	0.70	0.52		
/	A		Hea	61			0.14	1.55		
\$	~	Earm 4	Ket	20	0.70	0.70	0.65	0.75		
mp]/	1 ann 4	Hea	87	0.72	0.70	0.00	<u> </u>		

Ketosis: Many Sensors

Lying behavior , Rumination, Neck Activity, BW, Milk components

Decision Model

► Logistic Regression

Applied Results

▶ Ref: Machteld's PhD, in the ARO library

Precision feeding

► A New EU-Project. 2013-2017 (6.5 M€)

