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Topic of the talk

The talk discusses the use of expert probabilities in stochastic models
for decision support:

@ decision-support systems are automated systems that assist
people in taking decisions in complex situations;

@ modern decision-support systems range from simple decision
trees to sophisticated stochastic models;

@ while commonly constructed from data, some models are built on
expert knowledge.

The talk reports experiences with developing a decision-support
system for early warning of Classical Swine Fever in pigs.
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EPIZONE: Early warning of CSF

In view of the following considerations:

@ Classical Swine Fever (CSF) is an infectious disease in pigs with a
potential for rapid spread;

@ the disease has a low prevalence and often remains undetected
for a long time;

@ an outbreak of the disease has major socio-economic

consequences;

we built an early-warning system for Classical Swine Fever, for use by
pig veterinary practitioners throughout the European Union.
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The CSF system and its input

Our early-warning system for CSF takes input data:

@ from a group of sick pigs, a veterinarian selects up to five
individual animals for further inspection;

@ for each selected pig, the system asks for a variety of clinical signs:

Ataxia Fever Nasal secretion
Conjunctivitis Huddling Petechia

Cyanosis Lack of appetite Respiratory problems
Diarrhoea Lethargy e

@ in addition, the system asks for group summary information:

>
>
>
>

the time of onset of clinical signs;
the spread of clinical signs;
mortality;

Expert Probabilities: [MUNIGSISRESNY 4/36



The CSF system and its output

Our early-warning system for CSF generates output:

@ the system computes the probability of the clinical signs being
caused by the CSF virus:
» for this group of animals, the probability of CSF being present

equals 0.07, which is some 4000 times the probability for an
arbitrary group of diseased animals.

@ based on this probability, the system recommends further actions
to be taken:
re-visit the farm in a couple of days;

send in samples to rule out CSF;
call the veterinary authorities;

>
>
>
>
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Behind the screens of the CSF system
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Bayesian networks in general

A Bayesian network encodes a joint probability distribution in

@ a graphical structure, representing the stochastic variables and
their (in)dependency relationships;
@ an associated set of parameter probabilities.

0.20 p(mc) = 0.20
0.05
p(c| b,isc) = 0.80
0.80 p(c| b,isc) = 0.80
0.20 p(c|b,isc) = 0.80
p(c|b,isc) = 0.05
0.95
0.10 p(sh|b) = 0.80
p(sh|b) = 0.60

Algorithms are available for computing probabilities of interest.

SNSRI STNELNMEH Bayesian networks in general 7/ 36



The Bayesian network of the CSF system

The CSF early-warning system embeds a Bayesian network with:
@ 32 stochastic variables:

» clinical signs, internal effects of the viraemia, risk factors,
alternative explanations, . ..

@ 63 links between the variables:

» an elevated body temperature can cause an animal to seek
warmth by huddling, . ..

@ some 1500 (conditional) probabilities:

Malaise no no yes yes

Body temperature | normal elevated normal elevated
Appetite  normal 0.995 0.75 0.15 0.10

decreased 0.005 0.25 0.85 0.90
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The construction of the CSF network

The Bayesian network of CSF was constructed by hand:

@ literature;
@ expert knowledge:

» in-depth interviews with two pig researchers and with a group of
Dutch swine practitioners with CSF experience;

» case reviews with experts in the six partner countries within the
EPIZONE project;

» written questionnaires with (practising) experts from all
countries involved;

@ a small collection of data.
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The expert meetings

To gather detailed knowledge for our model, we interviewed multiple
experts in plenary meetings per country:
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The expert meetings

To gather detailed knowledge for our model, we interviewed multiple
experts in plenary meetings per country:

We studied within-expert and between-experts properties of the
probability assessments obtained.
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Probability assessments from multiple experts

The following probabilities were requested from all experts, in the
displayed order:

Probability

p1 = Pr(conjunct | csf, no-other)

p2 = Pr(conjunct | csf, resp)

ps = Pr(conjunct | csf, intest)

ps = Pr(conjunct | csf, resp+intest)
ps = Pr(
ps = Pr(

sniv | muco)
sniv | no-muco)

The requested probabilities are mathematically independent, yet not
unrelated from a domain perspective.
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The elicitation method used

For the assessment task, we used a tailored elicitation method:

certain - 100
(almost)

probable

expected

Consider a pig without an infection of the
mucous in the upper respiratory tract. How fifty-fifty + 50
likely is it that this pig is snivelling ?

uncertain

improbable i 15

(almost)
impossible L 0

The method was demonstrated through a plenary instruction.
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The assessments obtained

For the probability p1 = Pr(conjunct | csf, no-other), the following
assessments were obtained:

Country || Assessments Range Mean
060 075 075 075 0.80 [0.60,0.80] | 0.73

B 030 040 050 071 075 0.85 [0.30,0.85] | 0.59

c 015 015 020 025 0.30 [0.15,0.30] | 0.21

D 040 050 075 090 0.95 [0.40,0.95] | 0.70

3 070 075 079 [0.70,0.79] | 0.75

F 015 034 050 064 075 075 079 | [0.15,0.79] | 0.56

NL 0.29

Analysis of variance showed that:

@ the null hypothesis of equal country means was rejected at a
significance level of 0.05;

@ upon post-hoc testing, the country mean of C was found to differ
significantly from those of A and £.
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The assessments obtained

The analyses per probability showed very little consensus per country
and across countries:

@ the results may have been influenced by the varying levels and
expertise of the assessors:

» people reason about probabilities by mentally considering and
counting possibilities;

@ the results may have been influenced by uncontrolled factors:

» language barriers, attitudes of the experts, atmosphere in the
group, remarks out loud;

@ the results may have arisen from actual differences in pig
husbandry between the countries . ..
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Expected qualitative orderings

We consider again:

Probability

p1 = Pr(conjunct | csf, no-other)

p2 = Pr(conjunct | csf, resp)

ps = Pr(conjunct | csf, intest)

ps = Pr(conjunct | csf, resp+intest)
ps = Pr(
pe = Pr(

sniv | muco)
sniv | no-muco)

@ the requested probabilities are mathematically independent;

@ the probabilities are not unrelated: based upon domain
knowledge, the following orderings are expected:

> p1 2p3 P2 2 Ps
> Pe 2 Ps
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The qualitative orderings obtained

We investigated the qualitative orderings, per assessor, of:

Probability

p1 = Pr(conjunct | csf, no-other)

p2 = Pr(conjunct | csf, resp)

ps = Pr(conjunct | csf, intest)

ps = Pr(conjunct | csf, resp+intest)
ps = Pr(
pe = Pr(

sniv | muco)
sniv | no-muco)

@ the ordering ps < ps was found with 97% of the assessors;

@ the ordering p; < p3 < p2 < ps was found with 62% of the
assessors . . .
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The qualitative orderings obtained

Using anchoring and adjusting as a heuristic, people choose a relevant
probability for an anchor to tie their assessment to by adjustment:

”1/\\”2
0 A 1.0

@ for the ordering p; < p3 < p2 < ps, some 65% of the violations
were caused by an adjustment
» in the expected direction,
» yet not by the expected (relative) amount.

@ the expected pairwise orderings were found with 86% of the
assessors.
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Violation of expected orderings

We consider again:

Probability

p1 = Pr(conjunct | csf, no-other)

p2 = Pr(conjunct | csf, resp)

ps = Pr(conjunct | csf, intest)

ps = Pr(conjunct | csf, resp+intest)

If the assessments for the parameters violate the expected ordering

p1 2p3 < p2=ps

the results computed from the network may be counterintuitive.
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Violation of expected orderings

We consider again:

Probability

p1 = Pr(conjunct | csf, no-other) = 0.58
p2 = Pr(conjunct | csf, resp) =0.67
ps = Pr(conjunct | csf, intest) =0.56
ps = Pr(conjunct | csf, resp+intest) = 0.72

If the assessments for the parameters violate the expected ordering

p1 2p3 < p2=ps

the results computed from the network may be counterintuitive.

SNSRI ST LRI Correcting ordering violations 18 / 36



Exploiting expected orderings

Expected orderings can be used as hard constraints on probability
assessments:

Isotonic regression is a general technique for correcting ordering
violations:

@ the resulting probability assessments are guaranteed to show the
expected qualitative orderings;

@ the resulting assessments have minimum-distance properties.
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Isotonic regression (special case)

Isotonic regression is a statistical technique for estimating parameters
Z =1{zy,...,2n},n > 2, constrained by a qualitative ordering <:

@ areal-valued function g on Z is isotonic with respect to < if for
any z,z' € Z:

227 — g(z) <g(2)

@ given a real-valued function f on Z, isotonic regression computes
the function ¢g* which minimizes

> (flzi) — 8(z))?
i=1

over all isotonic functions g on Z.

| NSNS STRELIEH [sotonic regression 20/ 36



Applying isotonic regression

For our totally ordered probabilities, the pool adjacent violators (PAV)
algorithm constructs the isotonic regression function g*:

@ iterate over the expert assessments f(p;) in increasing order:

> if the subsequent assessments f (p;),f(p;) violate the ordering,
replace them by their average g(p;) = g(pi);

» continue pooling assessments in decreasing order until the
ordering is satisfied;

after which all ordering violations have been corrected.

An example: Probability
ps = 0.85
p2 = 0.75
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Applying isotonic regression

For our totally ordered probabilities, the pool adjacent violators (PAV)
algorithm constructs the isotonic regression function g*:

@ iterate over the expert assessments f(p;) in increasing order:

> if the subsequent assessments f (p;),f(p;) violate the ordering,
replace them by their average g(p;) = g(pi);

» continue pooling assessments in decreasing order until the
ordering is satisfied;

after which all ordering violations have been corrected.

An example: Probability

p3 = 0.85 — 0.80
p2=075 — 080
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Applying isotonic regression

After applying isotonic regression per assessor, the following
parameter probabilities result for the CSF network:

Probability

p1 = Pr(conjunct | csf, no-other) =0.58 — 0.54
p2 = Pr(conjunct | csf, resp) =067 — 0.68
ps = Pr(conjunct | csf, intest) =056 — 0.56
ps = Pr(conjunct | csf, resp+intest) =0.72 — 0.73
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Sensitivity analysis

Sensitivity analysis is a general technique for studying the effects of
parameter inaccuracies on the output of a mathematical model:

0.8 |

0.6

0.4

£(x)

0.2

0
0 02 04 06 08 1
X

For a Bayesian network,

@ a specific parameter probability x is varied;

@ a specific output probability of interest is expressed as a function

f(x) of x.
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The general form of a sensitivity function

For a Bayesian network, the effects of parameter variation are
described by a sensitivity function f(x):

_a-x+b
Ccox+d

fx)

where

@ x € [0,1] is the parameter probability under study;
@ f(x) € [0,1] denotes a (prior or posterior) output probability;
@ a,b,c,d are constants built from the network’s other parameters.

Efficient algorithms are available for computing the constants in f(x).
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The general form of a sensitivity function

A sensitivity function takes the form of a part of a hyperbola branch:

a-x+b r >0
X) = = t
fx) c-x+d x—s+
d a
with s=——, t=-
c c x
(s,t)

_b~c—a~d

r
c2

@ the hyperbola has the two asymptotes x = s and f(x) = t;
@ the vertex of the hyperbola is the point (x,f(x)) where |f'(x)| = 1.
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Some example sensitivity functions

Some sensitivity functions from the CSF network are:

1 1
08| 08|
2 gl % 06
1
w w
8 04] 3 04
& &
02 02
o o
0 02 04 06 08 1 0 02 04 06 08 L

Pr(Malaise = yes | Poisoning = no, Pr(Primary other infection = intestinal | Pig type = finishing pig)

Primary other infection = none, CSF Phase 1 = yes)

s=-53,t=1 s=-0.01,t=0

1 1
08 08
% 08 08
w w
8 o4 8 o4
o o
02 02
X [
0 02 04 06 08 1 0 02 04 06 08 L

Pr(Cyanosis = yes | Primary other infection = none, CSF Phase 4 = yes) Pr(Primary other infection = none | Pig type = finishing pig)

s=4.82,t=1 s=1.02,t=0

26 /36

Sensitivity analysis



Robustness information from sensitivity functions

Robustness pertains to the stability of a network’s output in terms of
the assessments for its parameter probabilities:

@ the output is robust if varying the network’s assessments reveals
little effect on the output; otherwise, it is not robust.

A sensitivity function conveys robustness information for a single
output probability, through

@ the value of its first derivative at the original assessment for the
parameter under study;

@ the location of its vertex relative to this original assessment.
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The sensitivity value

Consider a sensitivity function f(x) and its first derivative f'(x):

a-x+b y,n_a-d—b-c
f(x)Zm f(x)_—(c-x+d)2

The value | f'(xo)| for the original assessment x( for the parameter x, is
the sensitivity value for xp:

o if | f'(x0)| > O, then the output probability is sensitive to deviations
of x from xg;

@ the larger the sensitivity value, the stronger the effect of
deviations from x; can be.
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Some example sensitivity values

Sensitivity analysis of the CSF network revealed:

@ many parameters with small sensitivity values:
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the sensitivity value at
Xp = 0.6 is 0.052

°
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PriLung infection
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Pr(Respiratory problems = yes | Lung infection = yes)

@ some parameters with quite large sensitivity values:

the sensitivity value at
xo = 0.025 is 8.163

=vyes)

PrCSF
o
=

% 02 04 06 08 1.

Pr(Primary other infection = intestinal | Pig type = finishing pig)
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Bounds on the sensitivity value

The sensitivity value is highly dependent of the original assessment x
and the associated original output probability py:

Large sensitivity values are found only for the more extreme x.
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The usefulness of the sensitivity value

=
o

o
©

yes)
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>

Pr(CSF
o
N

o
)

O'00.0 0.2 0.4 0.6 0.8 1.0

Pr(Skin haemorrhages = yes | Poisoning = no, Primary
other infection = none, Cyanosis = yes, CSF Phase 4 = yes)

The sensitivity value at xo = 0.15 equals 0.31, which suggests little
effect on the output probability:
@ deviations from xj to larger values indeed have little effect;
@ deviations from x( to smaller values, however, can have a
considerable effect !

Studying robustness
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Extra information from vertex proximity

a-x+b
x+d

—d+\/la-d—b-|
c

From a sensitivity function f(x) = , the vertex (xs,f(xs)) has

xS:

Now,

o if the assessment xp for x is close to x;, then the sensitivity value at
xp is not a good approximation of the effect of parameter variation;

o the further x( lies from x;, the better the sensitivity value describes
the effect of deviations from x.
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Some example locations of the vertex

Sensitivity analysis of the CSF network revealed:

@ various parameters whose assessment x lies close to x;:

1
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>

with xp = 0.15, the x-coordinate
of the vertexis 0.0185

PHCSF
o
=
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.
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Pr(Skin haemorthages = yes | Poisoning = no, Primary
other infection = none, Cyanosis = yes, CSF Phase 4 = yes)

@ various parameters whose assessment xy lies away from x;:

with xg = 0.6, the x-coordinate
of the vertex is 0.0338

Pr(Respiratory problems = yes | Lung infection = yes)
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Concluding observations

For some fields of application, Bayesian networks have to rely on
expert probabilities:
@ expert probabilities are inaccurate and include biases;

@ expert probabilities show very little consensus numerically.

Several techniques are available for studying and reducing the effects
of inaccurate expert probabilities:

@ isotonic regression enforces more robust qualitative ordering
information to hold;

@ sensitivity analysis shows which parameter probabilities require
further elaboration.
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Wrapping up ...

To study the performance of the CSF network, data were gathered
from individual animals using a standardised protocol:

@ data from experimental infections:
» experimental infection studies in Denmark, Germany and the
Netherlands;

» data were recorded every two or three days;
» for each animal, some 15 clinical signs were scored;

@ field data:

» practitioners from the Netherlands, Belgium,
Denmark, Germany and Italy;

» up to five animals per pen;
» for each animal, 15 clinical signs were scored
and the most likely diagnosis was recorded.
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Wrapping up ...

Initial evaluation results for individual animals are promising:

: cut-off value || specificity | sensitivity

8 0.00001 0.42 0.74
HE 0.00005 0.77 0.52
f. 0.0001 0.84 0.39

0.0005 0.95 0.23

i 0.001 0.97 0.18

: 0.005 0.99 0.15

where sensitivity values have been corrected for differences in

population and environment conditions.
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