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Abstract 
Integrated management systems (IMS) for pigs offer the prospects of 
optimising meat production and minimising nitrogenous pollution through 
closed-loop control of pig nutrition. A system for the control of feeding to 
growing pigs was developed and tested. It used real-time estimation of weight 
by a visual image analysis (VIA) system, automatic feed recording and a 
mechanistic growth model in a closed loop control system. Optimisation was 
used to adapt the model in response to recorded feeding and growth, and to 
regulate the future feeding to reach the desired growth targets. 

One sub-experiment within the trial set weight gain targets of 50 kg and 60 kg 
over 70 days using 2 pens for each target. In 3 of the 4 pens the final mean 
weight was within 2 kg of the target. In the fourth, unknown factors cause a 
check in the pigs’ growth about 14 days from the end of the trial, having 
previously been on target. There was insufficient time for the system to correct 
for this and they finished 5 kg below target. Another sub-experiment has 
provided encouraging but not conclusive results for the control of back-fat 
depth.  

1 Introduction 
Traditionally, weight has been used to measure pig performance because of the 

difficulty of making any other measurements of live animals. However, visual image 

analysis (VIA) can measure area and linear dimensions and estimate volumes quickly, 

frequently and accurately. VIA measuring systems developed at Silsoe Research 

Institute, offer near real time objective assessment of the size, shape and hence growth 

of individual pigs. Our research has shown that measurements from the top view image 

of a growing pig correlate closely to its weight, and indicates that other measured 

dimensions enable a good assessment of lean meat and fatness to be made. A 

commercial version of the Silsoe VIA system for estimating the weight of pigs is now 

available from Osborne (Europe) Ltd. 



By using the VIA data in an integrated management system (IMS) comprising 

suitable nutrition models and feed control mechanisms, it should be possible to increase 

the efficiency in the animal performance – feed requirement cycle. More accurate 

provision of an ideal diet to individual or groups of pigs can then be managed by 

measuring dimensions relating to their actual condition, rather than estimates from 

weight or age. The IMS will be used to improve welfare, by enhancing the ability to 

provide an ideal diet at all times, so allowing better control of growth, composition and 

quality, and reduced environmental pollution. 

This paper describes research that was carried out as part of a programme of work 

that had the overall aim of developing a prototype closed-loop, model-based, real time, 

system for the integrated control of pig growth and pollutant emissions (Integrated 

Management Systems for pig nutrition control and pollution reduction, Defra LINK 

Project, SLP 065). The part of the programme that is reported here had the objectives of 

demonstrating the performance of a novel growth controller to achieve set growth rate 

and fat deposition targets, and to simultaneously monitor aerial pollutant emission 

responses to nutritional inputs. 

2. Method 

2.1. Experimental facilities and data collection 

In the trial, 144 male pigs of a commercial breed were reared in controlled environment 

facilities in six rooms each containing two pens capable of holding 12 pigs up to 110 kg. 

Half of the pigs were delivered at a nominal weight of 30 kg (28–40 kg), the remainder 

at 50 kg (39–57 kg); pigs of different weights were allocated to different rooms. Table 1 

shows the allocation to pens and trial targets or treatments. Pens 1–4 were used to test 

the ability to grow pigs to target back fat depths, which is used by the industry as an 

indicator of carcass fat content. Pens 5–8 were used for weight targets. No targets were 

set for pens 9–12. These were given fixed diets throughout, using the high and low 

protein feeds without blending in order to promote the development of contrasting body 

conformation as part of the analysis of the VIA system results. These pens, therefore, 

were not used in the controller trial, but were included in the model and adaptation 

testing. 



Table 1. Allocation of pigs and targets to pens 

Pen Initial weight 
(nominal) (kg) 

Target weight 
gain (kg) 

Target fat depth 
(mm) 

Treatment 
(protein level) 

1 50  12  
2 50  12  
3 50  16  
4 50  16  
5 30 50   
6 30 50   
7 30 60   
8 30 60   
9 30   Low 
10 30   High 
11 50   Low 
12 50   High 

 

Each pen contained a feeder that measured the weight of feed delivered to each pig 

at each visit, identified by radio-frequency transponders in ear tags. A camera was 

mounted about each feeder, supplying images to a VIA system (Marchant et al., 1999). 

This used the same pig identification system as the feeder. The VIA system has been 

shown to give reliable estimates of the weight of growing pigs from the plan area and 

height. The pigs were fed ad libitum diets that varied in crude protein (CP) content 

between pens, produced by manually blending two source diets of 140 and 190 g/kg CP. 

All the pigs in a pen received the same diet. The automatic weight and intake records 

were combined with a manual record of the feed blend to provide the inputs for the 

control system. These were transferred to Silsoe Research Institute at least once per 

week for processing. 

The pigs were also weighed manually once a week and the results were recorded. 

In addition, the P2 back fat depths of the pigs were measured using ultrasound 

(Concept/MLV ultrasound scanner with 3.5MHz veterinary external probe) at the start 

and end of the trial. 

The air extracted from each room by the ventilation system was monitored for 

ammonia concentration, allowing the total emissions to be estimated for each pair of 

pens. The volume of slurry produced by each pen was measured and it was sampled for 

nitrogen content. 



2.2. Growth model 

The system was based on the model described by Green & Whittemore (2003). This 

was a mechanistic growth model, which had been validated using data from the 

literature and previous trials. Within the system it was used to simulate each pig within 

a pen using its recorded feed intake. 

In general, the model performed well (see the results below), but tended to 

underpredict the growth rate slightly. The agreement varied between pigs and between 

pens, presumably due to slight variations in genotype, environment, health status and 

behaviour. This was expected and the system included a mechanism to adjust the model 

parameters in response to observations. 

2.3. Model adaptation mechanism 

The system was designed to allow selected model parameters to be optimised within 

defined ranges to minimise the root mean square error of prediction (RMSEP). The 

optimisation used the nonlinear revised simplex method of Nelder and Mead (1965) in a 

modified form that allowed constraints to be imposed. (See Appendix 1.) Tests 

conducted with other data sets using single parameters or up to 3 optimised jointly, 

found that good adaptation, without biologically unrealistic values, was obtained by 

optimising 2 parameters simultaneously. One of these, referred to as the illness factor, 

controlled the efficiency of use of dietary supplied nutrients. This was allowed to vary 

over a range of 0.1–1.9 times its nominal value, where a low value represents high 

efficiency (good health). The other parameter controlled the maximum protein retention 

rate, and was better determined, so was given a range of 0.7–1.3 times its nominal 

value. 

2.4. Control optimisation 

When the model was required to make a control decision it was first optimised for each 

individual in the pen using the data up to the present, as described above, in order to 

improve its prediction of future growth. It was then used predictively to model growth 

up to the end of the trial. In order to do so, a forecast of feed intake was required for 

each pig. Modelling voluntary intake is difficult and unreliable, so intake profiles were 

derived from results recorded in earlier trials. The profile was automatically adjusted for 

each pig based on its recent past intake. The controller then optimised the dietary blend, 

and hence the crude protein content, to minimise the RMSEP over the all pigs in a pen 

from the final target weight or fat depth. 



There was a single control variable, the dietary blend, but this could in principle be 

varied each day, giving up to 70 dimensions, each of which would have a very small 

effect on the objective function. There were thus two key problems: to reformulate the 

problem with fewer dimension and to find a suitable method of optimisation. 

The method selected to reduce the dimension of the control space was to use a 

control variable trajectory in the form of a piecewise linear function whose gradient 

changed at discrete, equally-spaced nodes. The control variables were then the gradients 

of the arcs. Assuming that the ideal control trajectory would be a smooth curve, this 

formulation gave a closer approximation than a step function, but used the same number 

of variables. The slope was constrained to restrict the rate of change of the protein 

content. If the slope took the blend for any day outside the range [0,1], it was simply 

assumed to take the limiting value. A small penalty was added to the objective function 

when this happened, because it improved the efficiency of the optimisation by reducing 

the time spent exploring irrelevant regions of the control space. 

To determine the number of nodes required, a slightly different formulation of the 

objective function was used. Instead of the difference between predicted final weight 

and a single target, a daily growth profile was specified, and the objective was to 

minimise the RMSEP between the predicted weights and the targets. This helped to 

ensure that there was sufficient flexibility in the control trajectory. Tests showed that 

the RMSEP between target and prediction reduced as the number of nodes was 

increased from one to four, but showed insignificant improvement beyond four nodes.  

This formulation thus reduced the optimisation problem to 4 dimensions.  

Several optimisation algorithms were tested, including genetic algorithms, quasi-

Newton methods and the nonlinear revised simplex method. Specifying the problem as 

a genetic algorithm was very simple. Each gradient was coded as a fixed number of bits; 

8 were sufficient, given the precision of the mixing of the feeds. This gave an integer in 

the range 0–255, which was scaled to the allowed range for the gradient. The fact that 

the variables were inherently bounded meant that there was no need for range 

constraints. The algorithm was numerically stable and gave consistent results of 

moderate precision, but was rather slow, requiring about 400 function evaluations. 

As the problem did not have many of the characteristics for which a genetic 

algorithm is usually selected, such as discrete or combinatorial variables, a more 

conventional method might be expected to give better performance. A quasi-Newton 

method was tested: subroutine E04JYF from the NAG library (Numerical Algorithms 



Group, Oxford, UK). This routine was selected because it allows bounds on the 

variables to be specified. The behaviour of this algorithm was highly variable: it could 

require over 1000 iterations to terminate, and the return status often indicated that the 

result found was not certain to be an optimum. The explanation for this lies in the 

model: like many growth models it contains thresholds and bounds on some of the 

internal variables. These can cause plateaux in the outputs and discontinuities in their 

derivatives, and hence in the objective function. For a gradient-based method these 

could result in poor convergence or poor identification of optima. 

As a direct search method, the revised simplex method is generally more robust 

when dealing with non-smooth objective functions than quasi-Newton methods. It 

becomes inefficient as the number of variables grows above about 10, or when high 

precision is required, but neither of these was the case for this application. The standard 

form of the algorithm is unconstrained, and there have been several attempts to produce 

general constrained versions. The complex method (Box, 1965) was an early variant, 

based on the original simplex method, and therefore without the advantages of the 

revised version devised by Nelder and Mead (1966). The modification by 

Subrahmanyam (1989) is effective for very complex constraints, but complicated to 

implement. The variant given in Appendix A has been found to work effectively for 

bounds on the variables and other simple regions. It was found to give more robust 

performance than the quasi-Newton method with acceptable precision, but to be faster 

than the genetic algorithm, typically converging within 100 iterations, which was 

equivalent to about 120 function evaluations. 

3. Results and discussion 

3.1. Growth model and model adaptation 

An example of the results for one pig up to the end of the trial is shown in Figure 1. It 

shows a close agreement between the model, VIA estimated weight and manual weight, 

with a small deviation at the end. The RMSEP for this pig compared with the VIA 

weights over the whole run was 3 kg. 

 



Figure 1. Example of growth model performance: prediction of weight compared 
with VIA estimate and manual measurements 

 

In assessing the system performance, it is the ability to predict and control the 

liveweight of the pigs that is most important, rather than the prediction by the model of 

the VIA estimate of weight. All of the trial results were therefore compared with the 

results of manual weighings and P2 back fat assessments made shortly before slaughter. 

In the case of the example above, the predicted weight was 96.7 kg compared with a 

measured weight of 94 kg; an error of 2.7 kg, which is consistent with the RMSEP of 3 

kg. The RMSEP of the model compared with the final weight, where the mean was 

taken over all the pigs in the herd, was 8.4 kg. After optimising the model parameters to 

minimise the errors from the VIA estimated weights as described in section 2.3, the 

RMSEP for the herd was reduced to 5.0 kg, illustrating that the use of the VIA estimates 

was an effective method of correcting the model. 

The prediction of P2 back fat depth was generally less reliable. For the same pig, 

the measured depth was 10 mm and the predicted depth was 12.4 mm. The RMSEP for 
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the herd was 2.7 mm. The optimisation procedure, which was based only on weight, 

increased the prediction for the pig to 12.9 mm and increased the RMSEP for the herd 

to 2.8 mm. This was not unexpected: with no feedback mechanism for fat depth, there 

was no reason why the prediction should improve. It should also be noted that the 

measurement of fat depth using ultrasound is itself prone to errors. 

Table 2. Results of optimising the model at the end of the run 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation 
(kg) 

RMSEP of 
weight after 
optimisation 
(kg) 

RMSEP of 
fat depth 
before 
optimisation 
(mm) 

RMSEP of fat 
depth after 
optimisation 
(mm) 

1 12 5.8 6.4 3.5 3.7 
2 12 8.5 2.5 1.9 2.5 
3 12 10.2 4.8 3.3 3.5 
4 12 5.7 3.7 3.5 3.4 
5 11 13.7 8.5 3.6 3.8 
6 11 9.6 3.5 1.8 1.8 
7 12 7.1 6.2 2.6 2.3 
8 6 8.5 2.5 2.4 2.7 
9 12 7.2 4.0 2.0 2.0 
10 12 7.3 3.7 1.6 1.8 
11 8 9.1 2.9 2.9 2.9 
12 12 5.6 5.8 2.5 2.3 
Herd 132 8.4 5.0 2.7 2.8 

 

The results for all pens are given in Table 2. There were a few cases where the 

optimisation increased the RMSEP of weight slightly for a pen; generally when the 

agreement was already good. This was due to intermittent, substantial overestimates of 

the weights of some of the pigs by the VIA system, which caused the optimisation to 

increase the prediction above the true weights. Better filtering of these outlying values 

would remove the problem. In general, the error in the prediction of fat depth was 

slightly increased by optimisation, as expected. 

These results confirm that the model gave generally good performance, and that 

optimising the chosen parameters using the VIA weight estimates was capable of 

improving the prediction of weight. However, they all depend on optimisation at the end 

of the run. In the trials, these optimisations were performed at each decision point, with 

the data available at that time. A similar analysis to the above was performed by 

truncating the VIA record at day 39 and predicting the final weight based on actual 

intakes until the end of the trial. The results are shown in Table 3. The results again 



show that optimisation reduced the RMSEP of weight, although by a smaller amount, as 

would be expected. The effects on the prediction of fat depth are also slightly less than 

when optimisation is performed using the full data set. These results confirm that the 

desired effect was obtained by this method of model adaptation. 

Table 3. Results of the model at the end of run after optimising at day 39 

Pen Final 
number 
of pigs 

RMSEP of 
weight before 
optimisation 
(kg) 

RMSEP of 
weight after 
optimisation 
(kg) 

RMSEP of fat 
depth before 
optimisation 
(mm) 

RMSEP of fat 
depth after 
optimisation 
(mm) 

1 12 5.8 10.8 3.5 3.0 
2 12 8.5 3.0 1.9 2.4 
3 12 10.2 4.8 3.3 3.5 
4 12 5.7 3.7 3.5 3.4 
5 11 13.7 8.5 3.6 3.8 
6 11 9.6 3.6 1.8 1.8 
7 12 7.1 9.1 2.6 2.2 
8 6 8.5 2.2 2.4 2.7 
9 12 7.2 4.2 2.0 2.0 
10 12 7.3 3.9 1.6 1.8 
11 8 9.1 8.2 2.9 2.9 
12 12 5.6 6.5 2.5 2.3 
Herd 132 8.4 6.3 2.7 2.7 

3.2. Operation as an offline growth and nutrition control system 

Table 4 shows the final result of the controlled growth pens. Other than pen 7, 

which will be discussed below, the mean weight gain was within 2.5 kg of the target in 

each pen, and the back fat depth was within 1 mm of the lower target. The higher target 

in pens 3 and 4 proved to be beyond the capability of the system given the range of 

possible diets and ad libitum feeding, but these pens achieved the highest back fat depth 

in the trial.  

The pigs in pen 7 grew at a rate very close to the target for about 8 weeks, then 

suffered an interruption in their growth, for reasons that cannot be determined. 

Although they then started to recover, there was insufficient time for the controller to 

return them to the target. They were weighed on day 54, at about the time the problem 

occurred; at this point the mean deviation from the target was -2.3 kg (standard error 

1.7), which was similar in magnitude to the other pens. 

 



Table 4. Results of trial 2: mean deviation from target (standard error) 

Pen Mean deviation of 
weight gain from 
target, kg 

Mean deviation 
of fat depth 
from target, mm 

1  -0.9 (0.53) 
2  0.2 (0.60) 
3  -2.1 (0.72) 
4  -2.4 (0.68) 
5 2.1 (2.4)  
6 2.3 (0.9)  
7 -5.8 (1.5)*  
8 2.0 (2.4)  

* -2.3 kg at day 54 

 

5. Conclusions 
The present study has shown that pig growth model optimisation can be performed in 

real time using VIA data, and that weight gain in pigs can be controlled through an 

integrated management system using ad libitum feeding and a range of diet CP content. 

Some control of fat depth was also possible. 

Approximation of the control trajectory by a piecewise linear function described by 

the gradients at a small set of points was an effective method for reducing the dimension 

of the control space. 

Given the dimension of the problem and the nature of the model, a constrained 

version of the revised simplex method was found to be an effective and robust 

optimisation algorithm. 
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Appendix 1. A constrained variant of the revised simplex method 
Imposing a simple barrier constraint on the revised simplex method, that is setting the 

objective at an infeasible point to a high value, tends to cause the simplex to contract 

when it encounters the barrier, which reduces its ability to search the problem space. If 

the true optimum lies on or close to the barrier, the simplex may also be reflected away 

from it. It has to approach the minimum from one side and may converge to a point 

slightly further from the barrier. It would be more efficient, and less likely to converge 

to the wrong point, if part of the simplex were allowed to enter the infeasible region, so 

that it could straddle the minimum. This motivated Parsons (1992) to propose the 

following variant. 

Let the coordinates of the vertices of the simplex be xi and the corresponding 

function values be yi, 1 � i ��n. Assume that they are ordered so that yi � yi+1. If the new 

point x lies in the infeasible region, set its value to (yn + yn-1)/2. It will then become the 

new maximum point for the simplex, allowing it to cross the barrier, but it will be 

forced out at the next iteration, either by a feasible point or another infeasible one, 

ensuring that only one infeasible point is in the simplex at any time. There is a potential 

problem if the initial simplex contains multiple infeasible points, to the starting position 

and scale need to be chosen with care. 

In tests this was found to perform better overall than a variety of simple methods. 

Except when the constraints were very complex, it also outperformed the more complex 



method proposed by Subrahmanyam (1989), particularly when combined with the 

unlimited expansion variant described by Parkinson and Hutchinson (1972). 

 


