
A Markov Decision Process approach with
Q-learning for the stand management problem

Laurent Péret1, Ljusk O. Eriksson2, Peder Wikström2, Frédérick Garcia1

1 INRA, Unité de Biométrie et Intelligence Artificielle
BP 27, Auzeville, 31326 Castanet Tolosan Cedex, France.
Email: {peret,fgarcia}@toulouse.inra.fr

2 Dept. of Forest Resource Management and Geomatics
SE - 901 83 Umea, Sweden.
Email: {Ola.Eriksson,Peder.Wikstrom}@resgeom.slu.se

Abstract

Decision aids provided to foresters by forest management research are generally
based on deterministic models. However, different sources of randomness may
affect significantly the decisions to be taken. In this preliminary study, we con-
sider the effect of uncertainty on the tree mortality factor for the even-aged stand
management problem. This problem is modeled as a Markov Decision Problem
(MDP), where solutions are defined as policies which specify the actions to per-
form for each state of the system. The algorithm Q-learning we apply in this
paper, which belong to the field of reinforcement learning, is designed to auto-
matically generate the optimal policy of an MDP on the basis of simulations.
Preliminary experimental results are presented, that do not establish clearly the
influence of stochastic factors on optimal solutions.

1 Introduction

Decision aids provided to foresters by forest management research are generally based

on deterministic models. However, different sources of randomness may affect signifi-

cantly the decisions to be taken. For the stand management problem we consider (Wik-

strom, 2001), three processes involving stochasticity have been identified: the growth of

the trees, the mortality of the trees and the evolution of wood prices. In this preliminary

study, we choose to take into account the mortality factor which seems the most relevant

to us. Indeed, mortality is highly stochastic and significantly impacts the evolution of the

stand.

The decision problem we face is referred to as an even-aged management problem. It

consists in finding an harvest strategy for a given number of periods: at each period, we

have to decide what kind of treatment will be applied to the stand (i.e clear-cut, thinning

or nothing). At each stage, mortality can occur affecting a variable number of trees. The

objective is to maximize the expected net present revenue, which is defined as the harvest

value after deduction of fixed entry costs for each harvesting period.

Because the problem to solve is a sequential decision problem under uncertainty, we

use to model and to solve it the Markov Decision Processes framework (Puterman, 1994).

MDPs have become a standard in the artificial intelligence community since the beginning

of the 90s for modeling such problems. In the MDP framework, a solution to the problem

is defined as a policy which specifies the action to perform for each state of the system. In

other words, policies are reactive solutions which are able to provide good decisions using

feedback. This feature is crucial when uncertainty is high, as in the problem we face.

The stand management problem is defined by a simulator which randomly generates

successive states of the stand. Simulators are a natural way of specifying complex MDPs

that could not be solved by classical numerical methods like stochastic dynamic program-

ming. The algorithms we applied are designed to automatically generate optimal policies

on the basis of simulations. They belong to the field of reinforcement learning (Sutton &

Barto, 1998), a methodology developed by the communities of artificial intelligence and

machine learning. In this paper, we formulate the problem in the MDP framework and we

give the preliminary results obtained with the Q-learning algorithm (Watkins & Dayan,

1992) that we used to solve it.

2 An MDP formulation

An MDP is defined by a tuple < S, A, T, R, P > where :

• S is a finite set of possible states of the system,

• A is a finite set of actions,

• P is the state transition function, defining for each state-action pair (s, a) a next-

state distribution p(s′|s, a) that specifies the probability of transition to each state s′

upon execution of action a from state s,

• R is the reward function, defining for each state-action pair a real number r(s, a)

which specifies the immediate reward for executing action a from state s,

• T is the discrete set of instants, at which actions must be executed. It can be finite

or infinite.

We describe these elements for our problem in the following sections. Notice that

although state and actions variables are defined at the plot level, we rely on a single-tree

growth model to simulate the evolution of the stand.

2.1 States

A stand state s is described by the following state variables:

• the basal area in m2/ha BA,

• the number of stems NbSt,

• the basal-area weighted mean age in years MA,

• for each species sp,1 ≤ sp ≤ NbSp, the total volume of that species in m3 V Osp ,

where NbSp is the number of considered species,

• at the tree level, each stem is defined by tree variables namely: species, age, diame-

ter, volume.

A stand was here represented by a survey plot from the Swedish National Forest In-

ventory database.

2.2 Actions

At each instant, the action a to be executed is defined as the thinning intensity at the

stand 0 ≤ a ≤ 1, which specifies the proportion of trees to be cut. We consider discrete

levels of thinning intensity i.e. a ∈ {α0, α1, ..., αK} where 0 ≤ α0 ≤ α1 ≤ ... ≤ αK ≤ 1

and K is the number of levels of thinning intensity.

We assume that for a given state s and a given action a, some thinning rules are ap-

plied to choose between trees (from above, from below, ...).

Note: there are |A| = K possible actions.

2.3 State transition function

The stand evolves under the conjugate effects of three processes :

• Growth and yield

The growth model is a deterministic model which depicts the basal area growth

of each measured tree on a survey plot according to (Söderberg, 1986). Growth

response to thinning is predicted according to (Jonsson, 1980). Other functions are

used to compute tree heigths, tree volumes and tree values. Stand variables are

then aggregated values of tree variable values. For further details, see (Wikstrom &

Eriksson, 2000).

• Mortality

Mortality functions have been implemented according to (Fridman & Stahl, 2001).

Mortality occurs with a probability ε which depends on some stand variables (some

of the state variables listed above plus some geographical and site variables). If

mortality occurs, a proportion β of trees die where β is a random variable following

a normal distribution whose parameters depend on some stand variables. Mortality

is then distributed among bβ.NbStc trees where b.c is the integer round function.

It is distributed with respect to the probability of mortality for each single tree that

depends on some tree variables (species, age and diameter) and on several stand

variables.

• Harvests

If a = αi then bαi.NbStc trees are harvested.

Note: there are 2NbSt possible successor states s′ for each state s.

2.4 Instantaneous rewards

The instantaneous reward r received at a given instant is defined by :

r(s, a) =
∑N

p=1 vh(ap, sp) + vd(ap, sp)− F (s, a)

where vh is the tree value from harvest,vd is the tree value from dead wood and F (s, a)

is the entry cost depending on whether harvests were performed (i.e if ∃p/ ap > 0).

Tree values were computed with theoretical bucking.

2.5 Instants and global criterion

We consider the problem over one rotation : the set of instants is supposed to be finite

and constant. The period between two instants is supposed equals to 5 years. We call τ

the number of instants.

The objective function to be maximized is the discounted sum of instantaneous re-

wards : J =
∑τ

t=1 γt.rt where rt = r(st, at) is the reward at instant t and γ the discount

factor.

3 Dynamic programming and Reinforcement Learning

For finite-horizon problems, a policy is a function π : S × T → A specifying the

action to be executed for each state at each instant. The value of a policy for a given

state s at instant i is defined as the expected sum of instantaneous rewards following that

policy V π(s, i) = E[
∑τ

t=i γ
t.rt|si = s, π]. An optimal policy π∗ maximizes the value for

every state of the system for every instant : ∀π V π(s, i) ≤ V ∗(s, i) where V ∗(s, i) is the

optimal value associated to any optimal policy.

An optimal policy can be generated by using stochastic dynamic programming in

finite horizon (Puterman, 1994). This algorithm recursively computes the optimal value

function V ∗ for every state of the system and every instant applying Bellman’s optimality

principle :

∀t ≤ τ, ∀s ∈ S V ∗(s, t) = max
a∈A

[

r(s, a) + γ.
∑

s′∈S

p(s′|s, a).V ∗(s′, t + 1)
]

(1)

and V ∗(s′, τ + 1) = 0. Deriving an optimal policy from the optimal value function V ∗ is

then straightforward :

∀t ≤ τ, ∀s ∈ S π∗(s, t) = argmax
a∈A

[

r(s, a) + γ.
∑

s′∈S

p(s′|s, a).V ∗(s′, t + 1)
]

The complexity of dynamic programming in finite horizon is in O(τ.|A|.|S|2) preclud-

ing its use when state or action spaces are large. Moreover, it can not be applied when the

transition probabilities or rewards are unknown. The reinforcement learning algorithms

are designed to overcome these difficulties by applying two principles :

• unknown quantities are estimated by means of simulation;

• large state or action spaces are handled through function approximation.

The Q-learning algorithm (Watkins & Dayan, 1992) is a standard reinforcement learn-

ing algorithm which can be used when the probabilities of transition are unknown and,

with the joint use of a function approximator, when the state or action spaces are large.

It consists in iteratively computing the optimal value function : for each state s at each

instant t, the optimal value Q∗(s, a, t) of each action a is estimated on the basis of simu-

lated transitions. When all these values have been correctly estimated, the optimal policy

can be derived through :

∀t < τ, ∀s ∈ S π∗(s, t) = argmax
a∈A

Q∗(s, a, t)

To estimate these state/action values, the algorithm performs Bellman’s updates in the

style of equation 1 but on the basis of a sample of simulated transitions instead of the

actual probabilities and rewards (see Algorithm 1).

If every action in each state at each instant is tried infinitely often and if the learning

rate properly decreases, then Q → Q∗ with probability 1. In practice, one needs some

efficient control of the search to focus on the most relevant state/action pairs. This is

Algorithm 1: Q-learning algorithm
Initialize(Q0);
for n← 0 to Ntraj do

s← InitializeState ;
for t← 1 to τ do

a← SelectAction ;
(s′, r)← SimulateTransition(s, a);
\\ Update of the simulated state/action pair value;
begin

d← r + γ maxb Q(s′, b, t + 1)−Q(s, a, t);
Q(s, a, t)← Q(s, a, t) + α(s, a, t)d;
\\ α(s, a, t) ∈ [0, 1] is the learning rate;

end

return Q;

the role of the SelectAction function which has to handle the classical trade-off between

exploration and exploitation.

4 Experiments

We consider a problem with one stand and two decisions (K = 2 : clear-cut or do

nothing). The state of the stand was defined as the total volume of the stand; other vari-

ables like number of stems were not taken into account in these preliminary experiments.

Two problem instances (i.e. two stands) were included in our experiments (see Table 1).

Stand 78 1118
Initial volume (m3/ha) 50.4 139.0
Initial age (years) 55 45

Table 1: Stand characteristics

4.1 Tabu search

An initial policy is provided by a Tabu Search algorithm. The resulting expert policy is

an unconditional plan which executes a clearcut at a fixed time whatever happens before.

The optimization process was performed using 10 trajectories to estimate the expected

value of J . The Tabu Search usually finds a solution in less than 1 minute.

4.2 Q-learning

As the volume is a continuous variable, the state space was discretized using a fixed

number of intervals. The resulting number of aggregated states becomes reasonable

(< 1000). However, we are still unable to compute probabilities of transition because

the mortality functions are defined at the tree level : we would need to compute 2NbSt

probabilities for each state-action pair to apply dynamic programming.

We implemented a classical exploration policy known as a semi-uniform exploration

policy. This policy chooses the action that currently has the highest estimated value with

a 1− ε probability and a random action with probability ε. ε was set to 0.2.

The learning rate α(s, a, t) was set to 1
N(s,a,t)

where N(s, a, t) is the number of times

action a has been previously executed in state s at time t.

The convergence of the Q-learning was obtained after about 5000 trajectories for stand

78 and about 10000 trajectories for stand 1118 (see figures 1 and 2).

0 2500 5000 7500 10000
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
x 10

4

Number of trajectories

E
st

im
at

ed
 v

al
ue

 o
f t

he
 g

re
ed

y
po

lic
y

(S
E

K
/h

a)

Figure 1: Convergence of the Q-learning - Stand 78

0 5000 10000 15000 20000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

Number of trajectories

E
st

im
at

ed
 v

al
ue

 o
f t

he
 g

re
ed

y
po

lic
y

(S
E

K
/h

a)

Figure 2: Convergence of the Q-learning - Stand 1118

4.3 Results

For stand 78, the optimal policy performs a clear-cut after 25 years in 52 % of trajecto-

ries and after 30 years in 48 % of trajectories. It slightly improves the unconditional plan

Stand 78 1118
Policy value(SEK/ha)
Tabu Search 11.6E03 26.4E03
Q-learning 11.7E03 26.4E03

Table 2: Value of policies obtained by Tabu Search and Q-learning - Values are estimated
over 10000 trajectories

obtained by the Tabu Search which always does a clear-cut after 30 years: sometimes it

seems better to clear cut sooner when high mortality occurs.

For stand 1118, the optimal policy always performs a clear-cut after 30 years, accord-

ingly to the unconditional plan provided by the Tabu Search.

The Q-learning requires between 10 and 20 minutes to converge.

5 Conclusions

These preliminary experiments show that the MDP framework is well suited for our

stand management problem. Indeed, even with a rough approximation of the state space

and a basic exploration policy, the Q-learning performs as well as the Tabu search.

However, the need of being reactive for our problem was not clearly established by our

experiments. A more complex criterion taking into account biodiversity or sustainability

might bring it to the fore. Other interesting developments consider richer actions and

states spaces.

References

Fridman, J., & Stahl, G. (2001). A Three-step Approach for Modelling Tree Mortality in
Swedish Forests. Scandinavian Journal of Forest Research, 16, 455–466.

Jonsson, B. (1980). Functions for long-term forecasting of the size and structure of tim-
ber yields (Technical Report 7). Dep. of Biometry and Forest Management, Swedish
University of Agricultural Sciences.

Puterman, M. L. (1994). Markov decision processes: discrete stochastic dynamic pro-
gramming. New York: Wiley-Interscience.

Söderberg, U. (1986). Functions for forecasting timber yield: increment and form height
of individual trees of native tree species in sweden (Technical Report 14). Dep. of
Biometry and Forest Management, Swedish University of Agricultural Sciences.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cam-
bridge, Massachusetts: MIT Press.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Technical Note. Machine Learning, 8,
279–292.

Wikstrom, P. (2001). Effect of decision variable definition and data aggregation on a
search process applied to a single-tree simulator. Canadian Journal of Forest Research,
31, 1057–1066.

Wikstrom, P., & Eriksson, L. (2000). Solving the stand management problem under
biodiversity-related considerations. Forest Ecology and Management, 126, 361–376.

