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Abstract 
We model the seed bank dynamics of Striga hermonthica, a parasitic weed 
found in sub-Saharan Africa. The model includes the effects of a number of 
different control strategies, and is formulated so that stochastic dynamic 
programming can be used to find those control strategies that optimise yield 
and/or profit. To use stochastic dynamic programming the state variable (in 
this case the Striga seed bank) needs to be divided into discrete states. 
Transition matrices that define the probability of the seed number going from 
one state to another are calculated for each set of control strategies. We 
examine three methods of solving the dynamic program, namely, policy 
iteration, backward recursion solution iteration and solving by recasting as a 
linear program. In doing this we demonstrate that stochastic dynamic 
programming can be used to define optimal strategies for controlling Striga 
hermonthica.   As such we have developed a conceptual model that now 
requires improved parameterisation so that additional control strategies for the 
different Striga species can be modelled and used to improve Striga control.  

1 Introduction 
The parasitic angiosperms Striga asiatica, S. hermonthica and S. gesneriodes are 

obligate root parasites that affect staple cereal crops, notably maize and sorghum in sub-

Saharan Africa (SSA). Striga is responsible for, conservatively, more than €0.8 billion 

in maize losses in SSA annually (reasonably reliable figures indicate €2.2 billion in 

losses, with some published estimates as high as €5.8 billion).  More than 100 million 

people, mostly resource poor, are affected. Striga attaches to the host’s root and strips it 

of nutrients, which in turn has a severe impact on yield.  A range of control strategies 

are available to the farmer at varying cost and effectiveness. These include a choice of 

leguminous trap crops grown in legume-maize rotations, inter or relay cropping with 

legumes and Striga tolerant maize varieties, early planting, increasing the amount of 

fertilizer applied, hand weeding and use of herbicides (Schulz et al, 2003; Emechebe et 

al., 2004). In most cases the cost of herbicides makes them a less favourable choice, 

although a technology based on coating herbicide resistant maize seed is showing 

promise. 



 58 

The weed model presented here describes the changes in Striga weed seed number 

(m-2) from season to season, and the economic impact of the weeds on the crop. Similar 

models were proposed by Doyle et al (1986) and Cousens et al  (1986) to describe the 

life cycle of Alopecurus myosuroide (wild oats) and Aventa fatua (black grass) 

respectively. Their models consider the soil to have a deep and shallow layer, and they 

track the changes in the seed bank in each layer. Seeds migrate between layers when 

certain cultivations are applied, but only seeds in the shallow layer are able to 

germinate. The decision model presented here describes the uncertain and variable 

nature of methods of control.  Sells (1993, 1995) simplified the weed models to have 

only one soil layer and used stochastic dynamic programming to optimise weed control 

strategies in cropping systems in the UK. In her stochastic dynamic program, as with 

ours, the state variable is defined as the weed seed bank. As the state variable needs to 

be composed of discrete states she divided the seed bank into logarithmically increasing 

ranges. Cultivations commonly used by African farmers are unlikely to move seeds 

between shallow and deep layers. Therefore we also consider the seed bank as one layer 

which we divide into logarithmically increasing ranges. 

There are several methods of solving dynamic programmes and the most suitable 

method for a particular problem will depend on several factors such as whether the 

problem is infinite horizon or whether it terminates after a fixed number of steps, the 

size of the state space and the problem itself. Here we consider three methods of solving 

the dynamic programme: solution iteration, policy iteration and solving by recasting as 

a linear programme. The results of applying each are presented and the differences 

between each approach discussed. 

2 Model Description 
The life cycle of a Striga weed is illustrated in Figure 1. This model of seed bank 

dynamics is described by the equation 

St+1 = St [ (1 – g – m) + g a (1 – w) s (1 – l )]   (1) 

where 

St is the number of seeds (m-2) at the beginning of season t,  

g is the proportion of seeds that are stimulated by the hosts root and germinate,  

m is the mortality rate of the old seeds,  

a is the proportion of germinated seeds that attach to the host and subsequently emerge,  

w is the percentage of emerged plants killed by control methods,  



 59 

s is the number of new seeds produced by each plant,  

l is the percentage of new seeds that are lost. 

A significant difference between the model described here and the one discussed 

by Sells (1993) is the inclusion of a term to describe the parasitic attachment of the 

weed to the host.  

From equation (1) we see that the number of Striga plants Et that emerge in season 

t is given by  

Et =  St g a       (2) 

of which  

Mt =  St g a (1 – w )      (3) 

go on to flower and produce seed. The critical damage is done when Striga attaches to 

the host, and so yield loss (Lt) in season t is defined by  

)1( tE
t eYL κ−=      (4) 

where Y  (t ha-1) is the yield that would be achieved if no Striga plants occurred, and �  is 

a crop dependent constant parameter. The benefits of controlling the weed after 

emergence are therefore not seen until the following year.  

 

 

 

Figure 1. The life cycle of the Striga weed during a season. 
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2.1 The Model Parameters 

In most cases the parameter values will depend on the crop and field husbandry. For the 

purposes of this study we consider effects of crop, sowing time, soil fertilizer and 

weeding. Others could be included such as herbicides. However on many African farms 

herbicides are not used due to cost. The effects of these factors are summarised below. 

The parameter values used in this study are given in the appendix. These were estimated 

from the data in Weber et al (1995) and Ellis-Jones et al (2004). These data showed a lot 

of variation (which could not be attributed to factors not included in the seed bank 

model) and were the motivation for a stochastic model of the process.  However it also 

makes it difficult to estimate parameters from the data. Ideally, a wider literature search 

should have been carried out than was possible in this study or experiments carried out 

designed to derive parameter estimates.  

Crop The crop affects the germination (g), attachment and emergence (a) of the Striga 

plant, the number of seeds produced per plant (s), and the yield loss attributed to Striga. 

The crops we consider are local maize, sorghum, fallow, resistant or tolerant maize and 

soybeans, the latter two crops grown in rotation being a recommendation for integrated 

Striga control made by the International Institute for Tropical Agriculture (Ellis-Jones et 

al; 2004). 

Fallow: When left fallow very few Striga plants emerge, and so there is a drop in 

seed bank due to seed mortality although this is not believed to be very significant. 

The Striga plants that emerge can parasitize on natural host crops. . 

Maize: Both local and resistant maize stimulate Striga germination, however the 

attachment is much lower in resistant maize.  

Sorghum: Sorghum can be particularly susceptible to Striga. 

Soybean: Soybeans stimulate Striga germination but the weed is unable to attach to 

the plant and dies.  This is referred to as suicidal germination and the soybean as a 

trap crop.  Other leguminous trap crops include groundnuts and cowpeas. 

Sowing time We class sowing time as early or mid. Early sown maize can sometimes 

escape Striga but there is an increased risk of losing the crop to drought. In early sown 

maize the attachment and emergence parameter (a) is reduced as Striga seed germinates 

at a later stage and the maize is not badly affected.  

Fertilizer  We class fertilizer as high, moderate or low. Fertilizer can improve the 

resilience of the crop and therefore affects the attachment and emergence parameter (a). 

We incorporate this factor in for maize, resistant maize and sorghum. 
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Weeding Hand weeding or roguing reduces the number of Striga plants that reach 

maturity and can set seed. In the model weeding is either carried out or not. If weeding 

is done it is assumed to be done effectively.  

Seed loss  Loss of seed can occur as a result of livestock or wildlife dispersing it as well 

as soil and wind erosion, although this does lead to Striga contamination in other areas. 

Contamination of harvesting equipment may also result in seed being removed. For the 

purposes of this study we assume that this loss is negligible and set l = 0. Therefore 

from hence forward it is omitted from equations. 

2.2 The State Variable 

In the model described here the state variable is the seed bank number. To use a 

stochastic dynamic program the state variable needs to be divided into discrete states. 

Sells (1993) allocates the boundaries based on a logarithmic scale because of the 

exponential nature of population growth. Following this philosophy the seed bank 

ranges are allocated as shown in Table 1. The range of seed numbers reflect those 

observed by Weber et al  (1995), who report Striga seed numbers ranging from 0 – 

 150800 m-2 with a mean of  29000 m-2 and a standard deviation of 33000 m -2.  

Table 1. Striga seed bank ranges allocated to each state 

States Range of seed bank (m-2) 
1 0 – 1000 
2 1000 – 2000 
3 2000 – 4000 
4 4000 – 8000 
5 8000 – 16000 
6 16000 – 32000 
7 32000 – 64000 
8 64000 – 128000 
9 128000+ 

2.3 Including Uncertainty 

Uncertainty can be attributed to all parameters and ideally should be incorporated at 

each stage. However in practice data are not available to make sensible estimates. 

Because of this Sells (1993) only considered the herbicide effect to be uncertain. In the 

system she considered herbicides were the driving factor in weed control. However, in 

sub Saharan Africa the cost of herbicides makes their use less likely as well as being 

inefficient as most crop damage occurs before the Striga plant emerges.  Hence other 

control methods are more important. Here we only consider the attachment and 
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emergence of Striga plants as uncertain as we have some indication of variability from 

Webb et al (1995). We use the Normal distribution N(x; � , � ) to describe the 

uncertainty associated with the attachment and emergence of Striga plants, the little data 

we had available suggested it was not unreasonable to assume the standard deviation (� ) 

is equal to the mean (� ). The mean values for attachment and emergence for each crop, 

fertilizer level and sowing time are given in the appendix.   

2.4 Calculating Transition Probabilities  

To use stochastic dynamic programming we need to calculate the probability k
ijp  of 

moving from one state i to another j for a given set of actions defined by index k. In our 

case states i and j represent ranges of seed bank and actions k will define crop, sowing 

time, fertilizer level and whether weeding has occurred. The transition probability is 

defined by the equation 
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where U j and Lj are the upper and lower limits of seed band j respectively, and �  is the 

value of the old seed bank. To be computationally efficient instead of integrating over 
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2.5 The Reward Function 

In order to be able to optimise the system a reward must be associated with moving 

from state i in season t, to state j in season t + 1, given the set of actions (or decisions). 

For the set of decisions we have defined in this problem the reward ( k
ijR ) is given by 

k
ijR  = (Y – Lt ) v – Vc – Nc – Wc     (10)  

where k indicates the set of decisions made, Y is the expected weed free yield of the 

crop, Lt is the yield loss, v is the crop market value, Vc are the variable costs associated 

with growing the crop (i.e. things like seed cost), Nc is the cost of the fertilizer 

application and  Wc is the cost of weeding.  

The yield loss Lt is defined in equation (4) and is dependant on the number of 

plants that attach to a host and emerge (Et). Substituting equation (2) into equation (1) 

and rearranging to gives 
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An estimate of the number of emerging plants that occur when moving from state i to j 

is given by the mean of taking n sample points in both St+1 and St (as described by 

equation (9)) and evaluating equation (11) for all combinations of sample points. 

Mathematically this is written 
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3 The Dynamic Programme  

3.1 The Dynamic Programme Formulation 

The formulation of the stochastic dynamic programme is 
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where ft(i) is the optimal expected reward for years t and beyond given that at the 

beginning of year t the number of seeds in the seed bank is described by state i, k
ijp  is 

the transition probability of going from state i to j given the actions described by k, k
ijR is 

the associated reward and �  is a discount factor. The discount factor �  is given by  
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where I is the current rate of inflation, here assumed to be 3 %, and 
�

 is the interest 

rate, here assumed to be 6 % giving �  the value 0.9717. 

 Once the dynamic program is formulated there are a number of ways to solve it. 

Here we consider three and in each case we assume we want to optimise profits over an 

infinite time horizon. The methods considered are policy iteration, backward recursion 

solution iteration and by recasting as a linear programme. We outline the principles of 

each below. Full descriptions of these methods and the limitations under which they can 

be used are in Howard (1960) and White (1993). 

3.2 Policy Iteration 

The policy iteration routine works by iterating around a cycle of value determination 

and policy improvement. Value determination solves the set of equations  
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for f(j) given a policy k, where i = 1, … N and j = 1, .. N. The policy improvement then 

finds the new policy k̂  which maximises  
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using the values of f(j) calculated in the previous value determination. The new policy is 

then used in the value determination part of the cycle to evaluate each f(j) and so forth. 

The iteration can start with either value determination or policy iteration and continues 

until two successive iterations are identical. To start an arbitrary policy or set of f(j) 

values may be used. In our example we set each f(j) initially to zero and started with the 

policy improvement step. We used NAG routine F04AAF (The Numerical Algorithms 

Group Ltd, Oxford UK. 2002) to solve the system of equations at each iteration. 

3.3 Backward Recursion Solution Iteration 

Starting with the final year’s costs fF equation (12) is solved iteratively until either the 

solution reaches a steady state or a maximum number of iterations have been completed. 

If the solution reaches steady state then the value of the final years’ cost does not affect 

the solution, although it may affect the convergence rate to the steady state solution. In 

our example for simplicity we set fF=0. A better estimate is given by Sells (1995). 
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3.4 Linear Programming  

The infinite horizon discounted reward problem can be recast as a linear programme 

and subsequently solved. In this formulation the objective function is  

)](...)2()1([min 21 Nfff N
f

λλλ ++     (16) 

and the NxM constraints are  
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where i = 1,…N and k = 1, …M.  The solution is independent of the � i provided they are 

greater than zero. The linear programme solution gives the values for each f(i), but we 

are interested in the optimal policy. This is given by the constraints that realise equality 

when the solution values f(i) are substituted into equations (17). We used XPRESS-MP 

version 10 (Dash associates Ltd, Northants, UK) to solve the linear programming 

problem.  

4 Results 
In Table 2 we present the optimal strategy should future control not be an issue. For 

example if the farmer only wishes to crop the land for a single year and then move.  The 

solution details the policy that should be adopted for each state. 

Table 2. The optimal policy if farming for only one year 

State Crop Weed Fertilizer Sowing time 
1 Maize No High Early 
2 Resistant Maize No High Early 
3 Resistant Maize No High Early 
4 Soybeans No High Early 
5 Soybeans No High Early 
6 Soybeans No High Early 
7 Soybeans No High Early 
8 Soybeans No High Early 
9 Soybeans No High Early 
 

Table 3 shows the results of solving the dynamic programme assuming an infinite time 

horizon. Not surprisingly each of the methods of solving the dynamic programme give 

the same solution.  
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Table 3. The policy solution of the dynamic programme 

State Crop Weed Fertilizer Sowing time 
1 Resistant Maize No High Early 
2 Soybeans No High Early 
3 Soybeans No High Early 
4 Soybeans No High Early 
5 Soybeans No High Early 
6 Soybeans No High Early 
7 Soybeans No High Early 
8 Soybeans No High Early 
9 Soybeans No High Early 
 
Figure 2 shows the effect of running the long-term policy derived using the 

dynamic programme. The figure shows both the changes in seed bank, where we plot 

the most likely seed bank in each year over a 20-year period. In year one the seed bank 

was set to 12000 seeds m-2. The dotted line indicates the threshold at which the policy 

changes from growing resistant maize to growing soybeans. 

In the example considered the time taken to run each of the methods of solving the 

dynamic programme were less than a second each so we could not tell which was 

fastest. In the case of the solution iteration we carried out 100 iterations and the values 

of f(i) had still not converged to steady state, although the policy converged at the 

second iteration. The policy iteration method converged at the second iteration. 
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Figure 2. A simulation illustrating the effect on the seed bank of running the 
optimal long term policy 
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5 Discussion 
The methods of solution we looked at were all effective; however each has its 

limitation. Both policy iteration and the linear programming method stops of their own 

accord when the optimal policy is found; there is no comparable behaviour in the 

solution iteration method. For this particular example convergence appears to occur at 

the second iteration; however in many problems it is difficult to tell when convergence 

has taken place. Therefore generally the value iteration method is not well suited to 

problems with a long duration. Conversely, policy iteration and the linear programming 

method described here can only be applied to a continuing process or to one whose 

termination is remote.  The solution iteration method can be terminated after a finite 

number of steps to give a solution for a fixed horizon.  

The memory requirements for solving the problem with policy iteration and the 

linear programming technique are greater than those required for solution iteration. The 

Striga model only has 9 states and 60 alternative policies. This results in a system of 9 

equations needing to be solved in the policy iteration method and 540 variable 

constraints in the linear programme. In more complex problems, for example where 

more than weed is considered, the number of states increases rapidly these solution 

methods become impossible to use with current computer hardware. The solution 

iteration method is less memory hungry, but does not converge to a solution as neatly as 

the other methods.  

 The solution of the dynamic programme indicates high levels of fertilizer should be 

applied independent of state, suggesting the benefits to yield and Striga reduction 

outweigh the cost of application. The solution also never suggests weeding. This is 

likely to be because the choice of crop is sufficient to control the weeds in the 

simulation. Early sowing does improve weed control in resistant maize and there is no 

cost penalty for this so it is not surprising choice in this instance. Sowing time does not 

affect the seed bank dynamics when soybeans are grown so the choice of early in this 

case is due to how the computer program was set up. The solution suggests that 

cropping is the key to seed bank control, with soybeans being used to force the seed 

bank to a manageable level. Once the seed bank is at a manageable level it becomes cost 

effective to grow resistant maize. Once the seed bank is over 1000 m-2 the long-term 

policies are identical. The results may have been more variable if we had split the seed 

bank into smaller bands. We reiterate that the data we used were not sufficiently 
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validated to draw real life conclusions from. However we have shown that given 

suitable parameter estimates a model like the one presented here can be used to derive 

an optimal future policy for Striga weed control.  This could be an invaluable tool for 

weed scientists, agronomists and extension agents in determining the long term effects 

of alternative integrated Striga control strategies.   
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Appendix 

Mortality parameter m = 0.1 

Percentage of emerged plants killed by weeding w = 0.95 

Table A1: Crop dependant parameters 

Crop Germination % ( g) Seeds per plant  (s) �  value in equation (4) 
Fallow 0.07 2000 0.2 
Local maize 0.1 5000 0.2 
Resistant maize 0.1 5000 0.2 
Sorghum 0.1 7700 0.2 
Soybeans 0.43 2000 0.001 
 

Table A2:  Weed free crop yields (tn ha-1) 

Crop  Fertilizer  
 Low Medium High 
Fallow 0 0 0 
Local maize 1.0 1.5 2.0 
Resistant maize 1.0 1.5 2.0 
Sorghum 0.8 1.0 1.5 
Soybeans 0.5 1.5 2.0 
 

Table A3: Proportion of germinating Striga seeds that attach and emerge (a). 

Crop Early sown Late sown 
 Fertilizer Fertilizer 
 Low Medium High Low Medium High 
Fallow 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 
Local maize 0.00085 0.0008 0.00075 0.00095 0.0009 0.00085 
Resistant maize 0.00075 0.00065 0.0006 0.00085 0.0008 0.00075 
Sorghum 0.00205 0.002 0.0015 0.00205 0.002 0.0015 
Soybeans 0.00001   0.00001   0.00001   0.00001   0.00001   0.00001   
 

Table A4: Crop dependant costs. 

Crop Seed cost € ha-1 Market value € t-1 Weeding cost € ha-1 
Fallow 0.0 0.0 0.0 
Maize 8.32 168 16 
Resistant maize 8.96 168 6.4 
Sorgum 8.32 168 16 
Soybeans 7.38 144 0.0 
 

Fertilizer application costs (€ ha-1): low = 0.0, medium = 45.6, high = 91.2 
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