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Abstract

The majority of the work in the area of Markov decision processes (MDPs)
has focused on optimization criteria that are based on expected values of
the rewards or costs. However, such risk-neutral approaches are not always
applicable and expressive enough.

In this paper we present the preliminary results of a research project fo-
cussing on incorporating risk into MDPs by modelling MDPs using directed
hypergraphs. Two risk measures are considered, namely, the variance of the
total discounted reward given a policy and the expected total risk when as-
suming a separate risk for each time, state and action.

First, we consider recursive equations for calculating the variance/risk or
maximum risk. Second, it is shown how a state-expanded directed hyper-
graph can be used to model a finite-horizon MDP. Here a policy corresponds
to a so called hypertree. As a result, the optimal policy under e.g. the ex-
pected total cost criterion can be found solving a shortest hypertree problem
on the state-expanded hypergraph. Finally, bicriterion solution techniques
for directed hypergraphs are used to calculate the trade-off between risk
and cost.

1 Introduction

MDPs model sequential decision-making problems. At a specified point in time, a
decision maker observes the state of a system and chooses an action. The action
choice and the state produce two results: the decision maker incurs an immediate
reward or cost, and the system evolves probabilistically to a new state at a subse-
quent discrete point in time. At this subsequent point in time, the decision maker
faces a similar problem. The goal is to find an optimal policy of choosing actions
(dependent on the observations of the state) which is minimal with respect to a
certain criterion.

The majority of the work in the area of Markov decision processes (MDPs) has
focused on optimization criteria that are based on expected values of the rewards
or costs, see e.g. Howard (1960); Puterman (1994). However, such risk-neutral

approaches are not always applicable and expressive enough.
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A risk-sensitive criterion has been addressed by e.g. Cavazos-Cadena (2003);
Coraluppi and Marcus (1999) and Bielecki et al. (1999). Here an exponential utility
function is assumed with risk sensitivity A\ and the expected utility is maximized.
This criterion my not be suitable for all practical applications since the decision
maker must know the risk sensitivity parameter \. Moreover, A is constant for the
MDP.

We consider a different way of modelling risk. Two risk measures are considered,
namely, the variance of the total discounted cost given a policy and the total risk
when assuming a separate risk for each time, state and action.

Directed hypergraphs are an extension of directed graphs and undirected hy-
pergraphs introduced by Berge (1973). The concept of a hypertree and a shortest
hypertree was introduced by Nguyen and Pallottino (1989) and later the definition
of a hypertree in a directed hypergraph and a general formulation of the short-
est hypertree problem were given by Gallo et al. (1993). For a general overview
on directed hypergraphs see Ausiello et al. (2001). Recently, the study of directed
hypergraphs has become an important aspect in finding optimal strategies/paths
in stochastic time-dependent networks, see Nielsen (2004b); Nielsen et al. (2004);
Pretolani (2000). Moreover, algorithms to solve bicriterion problems in stochastic
time-dependent networks have been developed, see Nielsen (2004b); Nielsen et al.
(2003).

By having a look on the hypergraph model for stochastic time-dependent net-
works it is apparent that, hypergraphs also can be used to model finite-horizon
MDPs. However, to the authors’ knowledge no one has considered this way of mo-
delling finite-horizon MDPs. Here a MDP can be modelled using a state-expanded
directed hypergraph and the problem of finding the optimal policy under different
optimality criteria can be formulated as a shortest hypertree problem. Furthermore,
we can used bicriterion solution techniques for directed hypergraphs to calculate the
trade-off between the risk and cost.

The paper is organized as follows. Finite-horizon MDPs are introduced in Sec-
tion 2 together with recursive equations for different criteria. Section 3 presents the
hypergraph model for MDPs together with results on how the best policy can be
found. Bicriterion solution techniques are discussed in Section 4. Finally, conclu-

sions and directions for further research are pointed out in Section 5.
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Figure 1: Decision epochs and stages.

2 Finite-horizon Markov decision processes

We consider a finite-horizon Markov decision process with {1, ..., N} decision epochs
and N — 1 stages (see Figure 1). That is, the decision for epoch number n is taken
at the beginning of stage n.

At stage n the system occupies a state. We denote the set of finite system states
Sp. Given the decision maker observes state s € S, at stage n, he may choose
an action a from the set of finite allowable actions A,, generating cost ¢, (s, a)
(a reward if negative). Moreover, let 0 < A, (s,a) < 1 denote the corresponding
discount factor and let p, (- | s,a) denote the probability distribution or transition
probabilities of obtaining states s’ € S,, .1 at stage n + 1.

Since no decision is made at the end of stage N — 1, the cost at this time point
is a function of the state s € Sy denoted ¢y (s, ax) which is often referred to as the
salvage cost or scrap cost. Here ay denotes a deterministic (dummy) action.

A deterministic Markovian decision rule at stage n is a function 0, : S, — As,
which specify the action choice given state s at stage n. It is called deterministic
because the function chooses an action with certainty and Markovian (memoryless)
since it depends only on the current system state. We let D, denote the set of
possible decision rules at stage n. Markovian decision rules are a subset of more
general rules where the action may depend on the past history of the system and
actions may not be chosen with certainty but rather according to a probability
distribution.

A policy or strategy specifies the decision rule to be used at all stages and provide
the decision maker with a plan of which action to take given stage and state. That
is, a policy ¢ is a sequence of decision rules, § = (94,...,05) with 0,, € D,, for
n=1,...,N.

Let X,, denote the state of the system at stage n, i.e. X,, is a random variable

taking values in S,,. Furthermore, let Y,, = 0,, (X,,) denote the action chosen given



X,, and policy § = (01, ...,0n). The total discounted cost for stage n, ..., N is then

Ch = Z (1:[ Aj (Xjan)> ¢ (Xi,Y7) (1)

If the value of X,, is known with probability one, i.e. X,, = s, we denote the total
discounted cost C? (s).

Note that two costs may be considered for each s € S,, and action a € A, ,,. Here
the first cost ¢, (s, a) may be equal to the economic cost of choosing action a and the
second cost 7, (s,a) may denote the risk of choosing action a, where the risk may
be a relative value given by external experts or a value calculated mathematically

etc. Hence the total risk for stage n, ..., N is defined as

N

Ry, = Zﬂ‘ (X3, V) (2)

i=n

2.1 Optimality criteria

Assume that the decision maker seeks a policy prior to knowing the initial state.
We let pg (s) denote the probability of starting in state s € S;. This corresponds to
defining a policy to § = (99,01, ..., 0x) where g is the decision rule corresponding
to a deterministic dummy action ag. That is, we define stage zero with Sy = {s¢}
where sg represents the system before the state of the system at stage one is known
and let ¢q (89, ag) denote the cost. Moreover, we set pg (s’ | s, ag) = po ().
Optimality criteria can now be defined using (1) and (2), e.g the expected total

discounted cost given policy ¢ is

ETC’ =E (C§ (s0)) (3)
and the expected total risk given policy 0 is

ETR' =E (R, (s))) (4)

Note that from a mathematical point of view the economic cost (3) and risk
measure (4) define the same recursive equations (the discount factor \, is set to one
for each stage, state and action in (4)). In the following we will only consider (3).
It is well known that the policy § which minimize (3) is a deterministic Markovian

policy, see e.g. Puterman (1994, chap. 4). Let u’ (s) denote the expected total cost
5

% (s) can be found using the

of policy d at stage n,..., N given state s at stage n. u



recursive equations, Bellman (1957).

h(s) = { n (5,8) + 20 (5,0) Lyes,, P | @) s () m< N

cn (s an) n=N

That is, the optimal policy can be found by analyzing a sequence of simpler induc-
tively defined single-stage problems. This is often referred to as wvalue iteration or
dynamic programming.

Another risk measure can be used by considering the variance of the total dis-

counted cost
VTC® =V (C§ (s0)) (6)

Recursive equations for the variance of the total discounted cost (6) are found as

follows
V(Co(s)) =V (cn(s,a) + A (5,0) COyy | Xy = )

=\, (s,0)*V (COL1 ] X =)

=\ (s,0)E ((C’fl+1)2 —E (C’fl+1)2 | X, = s)
Conditioning on X, ;1 = s’ we get

Chan (8) —E(Cl ()" +

2

Coia (S/))2 - <E (warl) | X = 3)
(7)

Note that random variable Y with values y; = Y (s;) = E (C;;rl (sl-)), s; € Spy1 and
probability density P (Y =Y (s')) = p (s’ | s,a) satisfy that

V(610) e Tt 102 g

E(Y)=E(Chp | X0 =5)

Hence

> 5,0) (E(CLa ()" = (B ()" | X =)
= Zp(yi | s,a) (y2 —E(Y)?)

—V()=E(Y - E(V)P)

= il s) (i~ E(Y)

Substituting y; and Y we get

S op (s | s,a) (B(Chy () = (E(C,) | X =5))°



Moreover,
2

V(Chy () =B ((Co ()"~ E (€41 (5))

As a result (7) becomes
V(C6) = (5,0 (8| 5.0) (V (€ () + [E (Chan () = Unia]’)

with U,41 equal to
U = (B (Cla)” | X, = 5)

:Zp(8/|8,a warl / Zp S |S a n+1( )

Hence by letting v} (s) = V (C? (s)), we have the following recursive equations for

the variance of the total discounted cost.

vy (s) = { ())\n o 2P (5] 5.0) (Ugﬂ (s) + [ug 41 (8) = Un+1}2> n<N

3 A hypergraph model for finite-horizon Markov
decision processes

A directed hypergraph is a pair H = (V,€), where V = (vy,...,v)y|) is the set of
nodes, and £ = (ey,...,ej¢|) is the set of hyperarcs. A hyperarc e € £ is a pair
e = (T'(e), h(e)), where T'(e) C V denotes the set of tail nodes and h(e) € V \ T'(e)
denotes the head node. Note that a hyperarc has exactly one node in the head, and
possibly several nodes in the tail. We denote by

FS(v)={ec&|veT(e)}, BSw)={ec&|v=nh(e)}

the forward star and the backward star of node v, respectively. A directed hy-
pergraph H = (V,€) is a subhypergraph of H = (V,E), if VCV and ECE. A
subhypergraph is proper if at least one of the inclusions is strict.

We define a state-expanded hypergraph for a finite-horizon MDP as follows.

Definition 1 Let the state-expanded hypergraph H = (V, £) be obtained by defining

the node and hyperarc set as follows

V=A{vsn|n=0,..,NseS,}U{oyii}



(n, s) (L) (1,2) (2,1) (2,2) (3,1) (3,2
¢u(s,a) =70 50 =70 =50  -70  -50
s’ {1,2} {2,3} {1,2} {2,3} {1,2} {2,3}

pa (1 5:@) {55, 76} {160 36 {56 16} 160 164 {360 10} {55 16

Table 1: Input data for the problem Example 1 given action nmft.

E={ewsn|n=0,..,N—1seS,,acA;,,} U{esn|s€Sn}

with
€a,s;n = <{US/JL+1 | s’ € Sn+1; Pn (3/ ‘ S5 a) > O} 77]8,”) y EsN = <{UN+1} 7/USJV)
The following example illustrates how the state-expanded hypergraph is created.

Example 1 We consider a simple machine replacement problem. A machine may
be in three states: good, average and not working. Given the machine state we may
maintain the machine. In this case the state of the machine will be good at the next
decision epoch. Otherwise the machines state will not be better at next decision
epoch. The machine is always replaced after 4 decision epochs. Furthermore, if the
machine is not working then the machine may be replaced before decision epoch 4.
Finally, when the machine is bought it may be either in state good or average.

The problem of when to replace the machine can be modelled using a Markov
decision process with N = 4 decision epochs. We use system states good (1), average
(2) and not working (3) together with actions buy, maintain (mt), no maintenance

(nmt) and replace (rep). The system state sets S, and action sets A, becomes

{so} n=>0 {buy} n=0,s=sy
o _ {1,2} n=1 4 {mt,nmt} n=1,273 s=1,2
" {1,2, 3} n=2 e {mt,rep} n=223 s=3

{1,2,3,4} n=3,4 {rep} n=4,s=1,2,3

The state set Sy contains a single dummy state sy representing the machine before
knowing its initial state and Ay, o containing the deterministic action buy. Moreover,
As 4, s € Sy contains the deterministic action rep.

The cost of buying the machine is 100 with py (1) = 0.7 and py (2) = 0.3. The
reward (scrap value) of replacing a machine is 30, 10 and 5 in state 1, 2 and 3,
respectively. The reward of the machine given action mt becomes 55, 40 and 30 given
state 1, 2 and 3, respectively. Moreover, the system enters state 1 with probability 1
at the next stage. Finally, Table 1 show the cost, transition states and probabilities

given action nmt.
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Figure 2: The state-expanded hypergraph.

The state-expanded hypergraph H is shown in Figure 2 with the subscript of
node v,, shown in each node and action a corresponding to the hyperarc eq s
shown beside it. ‘H contains a hyperarc e, ,, for each possible action a given stage n
and s € S,, and a node v,,, € V for all stages n and states s € S,,. The head node of
a hyperarc corresponds to the state of the system before action a is taken at the tail
nodes to the possible system states after action a is taken. Furthermore, H contains
a dummy node vy;; which may be considered as the final system state representing
the system after the machine has been replaced. Note this is often modelled using
a dummy state replaced at each stage where the system stays in this state if it first
enters it. However, this is avoided in the state-expanded hypergraph. Moreover, H
contain arcs es y, with tail node vy, corresponding to the deterministic action rep

are used. Finally, note that the direction of the hyperarcs are backward in time. m

Observe that there is a one to one correspondence between a policy d and a
predecessor function g : V — £. Indeed, choosing g (vs,) = €45, is equivalent to
choosing 9, (s) = a. Moreover, g (vs n) = €, n is the only possible predecessor for
node v, y indicating that only a deterministic dummy action ay is possible at stage
N. The same holds for node vy, o.

Predecessor function g : V\ {vyy1} — & define a hypertree (a subhypergraph
of H) with root vy, (see Nielsen (2004a) for a explicit definition of a hypertree).
As a result an optimal policy can be found by finding a shortest hypertree on H
using a specific weighting function corresponding to the recursive equations given in
Section 2.

The weighting function of a hypertree is defined as follows. Assume that each
hyperarc e is assigned nonnegative real weight vector w(e) = (wi(e),...,wr(e)).
Given a predecessor function g, a weighting function W is a node function assigning

real weights W (u) to all nodes in H. We shall restrict ourselves to additive weighting



Figure 3: The optimal policy.

functions introduced by Gallo et al. (1993), defined by the recursive equations:

W () = { X e )
Hw(g(v))) +(g(v)) veVe\{o}
Here [ (+) denote a non-decreasing function of w (e) and f(-) a non-decreasing function
of the weights in the nodes of T'(e). Furthermore, let m.(v) denote a nonnegative
multiplier defined for each hyperarc e and node v.

Finding a shortest hypertree can be viewed as a natural generalization of the
shortest path problem and consists in finding the minimum weight for all nodes in
H. If H is acyclic (which is the case here) and the weighting function is additive a
fast polynomial algorithm exist (see (Gallo et al., 1993)). We illustrate the approach
by finding the policy minimizing the expected total discounted cost.

Example 1 (continued) For simplicity we assume that the discount rate A, equals

one for all stages, states and actions. Assign weights to the hyperarcs of H as follows

CN (S, GN) € = €5 N

wy (e) = { Cn (5, ) €= Casn

Moreover, for each hyperarc e assign multipliers

me(v) =4 " (s"[5,a) €= c€asn v ="0sni1 €T (¢)
e 1 € =€sN, U="UNt1

Then the optimal policy minimizing the expected total cost can be found by finding

a hypertree minimizing the recursive equations (9) with

w(e) =wi(e), fle)= Y me(0)W (v)

veT (e)



The hypertree corresponding to the optimal policy is shown in bold in Figure 3.
The expected total reward is 102.2. Note each time the machine reaches the average

state it is maintained. ]

Similar functions [ (-) and f(-) can be redefined so they correspond to the recursive
equations for the variance (7).

Note that, value iteration could have been used to find the optimal policy above.
However, modelling the MDP using the state-expanded hypergraph provide us with
efficient ways calculate the optimal policy and to store the MDP. More impor-
tant, specialized algorithms for directed hypergraphs can now be used on the state-
expanded hypergraph. That is, we can now find the K best policies ranking the
policies in nondecreasing order of e.g. the expected total cost Nielsen (2004a) and
used bicriterion optimization techniques for directed hypergraphs to find the trade-

off between to different criteria.

4 Bicriterion optimization

By representing a MDP using the state-expanded hypergraph we can calculate the
optimal policy under various criteria such as the expected total discounted cost or
the variance of the total discounted cost etc. Furthermore, by using bicriterion
optimization techniques for directed hypergraphs it is now possible to calculate the
trade-off between e.g. the expectation and the variance of the total discounted
cost. That is, we are interested in finding efficient policies where the weight of one
criterion cannot be reduced without increasing the weight of the second criterion.

Bicriterion optimization techniques for directed hypergraphs have been addressed
by Nielsen (2004b). A two-phase approach is used which splits the search for efficient
policies into two phases. In phase one the frontier is determined using a NISE
approach (see Cohen (1978)); this defines the triangles in which further efficient
policies may be found. Phase two proceeds to search the triangles one at a time
using a K best policies procedure, see Nielsen (2004a).

Computationally, the two-phase approach requires to solve shortest hypertree
and K shortest hypertree problems with respect to a parametric weight, that is a

linear combination of the two criteria.



5 Conclusions and further work

This paper presented the preliminary results of a research project focussing on in-
corporating risk into MDPs by modelling MDPs using directed hypergraphs. First,
recursive equations for finding the variance of the total discounted cost was de-
rived. Next, it was pointed out that a MDP can be modelled using a state-expanded
directed hypergraph H. Moreover, an optimal policy can be found by finding a
shortest hypertree on H. As a result bicriterion optimization techniques for directed
hypergraphs can be used to calculate the trade-off between e.g. risk and cost.

The research project still has may open questions which have to be examined
during the next months. For instance, the bicriterion optimization techniques for
directed hypergraphs have to be fine-tuned to the variance and expectation criteria.
Moreover, it must be checked whether the results for finite-horizon MDPs can be

extended to infinite-horizon MDPs.
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