

A hierarchical Markov decision process modelling feeding and marketing decisions of growing pigs

Reza Pourmoayed and Lars Relund Nielsen

Department of Economics and Business, Aarhus University, Denmark

Anders Ringgaard Kristensen

Department of Large Animal Sciences, University of Copenhagen, Denmark

IFORS conference - July 17, 2014

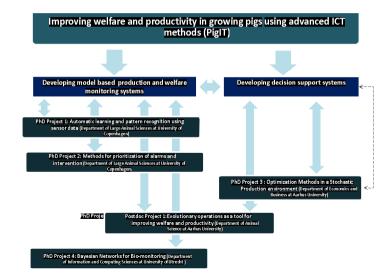
Agenda

PigIT research group

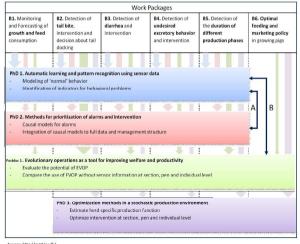
Optimal feeding and marketing decisions
Problem definition
Modelling approach
Initial results

Further research

PigIT project



Work packages



Source: http://pigit.ku.dk/

Agenda

PigIT research group

Optimal feeding and marketing decisions
Problem definition
Modelling approach
Initial results

Further research

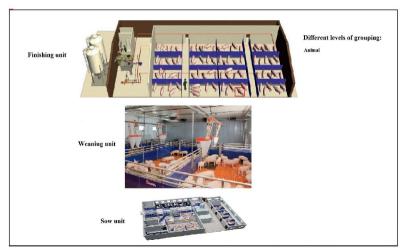
A sub-project in the work package B6

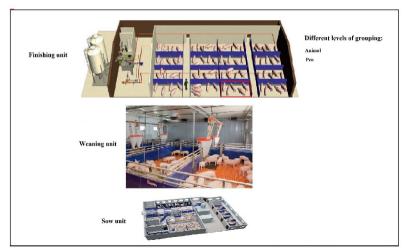
A hierarchical Markov decision process modelling feeding and marketing decisions of growing pigs

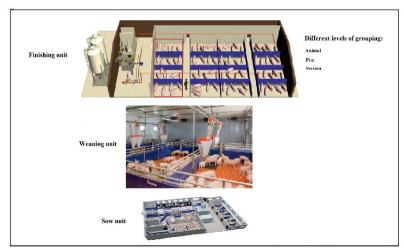
Contributions:

- ► Combination of feeding and marketing decisions by a hierarchical Markov decision process (HMDP).
- Embedding a dynamic linear model (DLM) and a dynamic generalised linear model (DGLM) into the proposed HMDP.

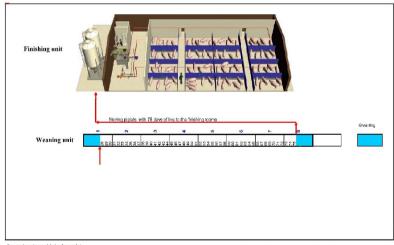


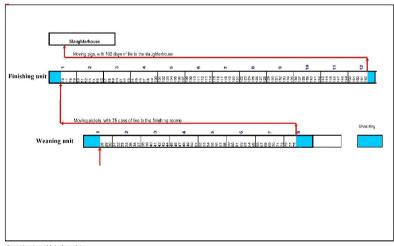


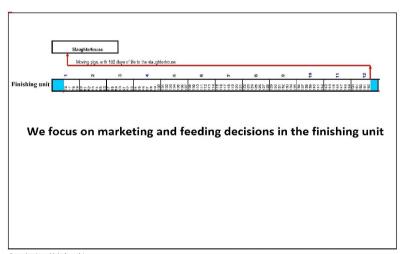




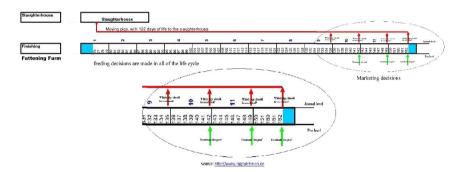








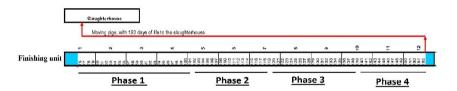
Problem definition - Marketing decisions



- ▶ Pen (or section) level: decision about when to terminate a pen and insert a new group of piglets to the pen.
- ▶ Individual (Animal) level: decisions about how to select and when to market individual animals for slaughter.

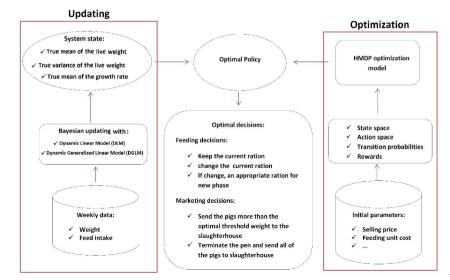
Problem definition - Feeding decisions

Phase feeding



- ▶ Decision about the time that the current ration (in the current phase) should be changed.
- Decision about finding the best new ration in the next phase.

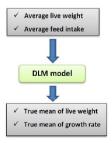
Modelling approach - framework (pen level)

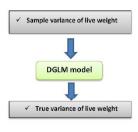


Updating model - Observations

The observations in the pen for each week (or day):

- ▶ Average live weight
- ► Sample variance of the live weight
- ► Average feed intake



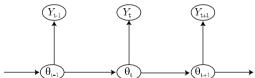


▶ DLM is a statistical model to analyse the time series and extract the true trend of latent variables (θ_t) based on the observed data:

► A system equation describes the extension of the latent variable against time t:

$$\theta_t = G\theta_{t-1} + \omega_t, \ \omega_t \sim N(0, V_t)$$

▶ DLM is a statistical model to analyse the time series and extract the true trend of latent variables (θ_t) based on the observed data:



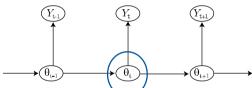
► A system equation describes the extension of the latent variable against time t:

$$\theta_t = G\theta_{t-1} + \omega_t, \ \omega_t \sim N(0, V_t)$$

▶ An observation equation indicates the relation between the observable (Y_t) and latent (θ_t) variables:

$$Y_t = F'\theta_t + \nu_t, \ \nu_t \sim N(0, W_t)$$

▶ DLM is a statistical model to analyse the time series and extract the true trend of latent variables (θ_t) based on the observed data:



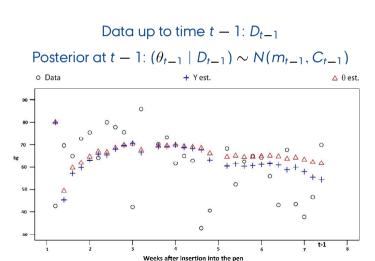
► A system equation describes the extension of the latent variable against time t:

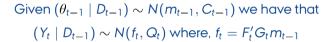
$$\theta_t = G\theta_{t-1} + \omega_t, \ \omega_t \sim N(0, V_t)$$

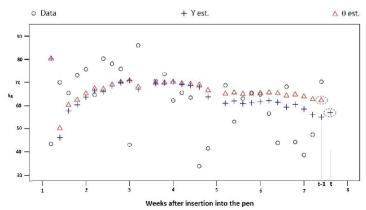
▶ An observation equation indicates the relation between the observable (Y_t) and latent (θ_t) variables:

$$Y_t = F'\theta_t + \nu_t, \ \nu_t \sim N(0, W_t)$$

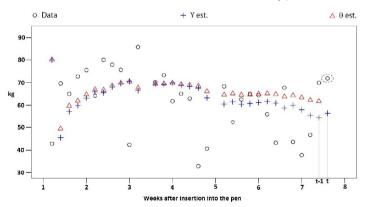
- $ightharpoonup W_{t-f}$: Average live weight at time t
- $ightharpoonup FE_{t,f}$: Average feed intake in interval [t, t+1]
- $ightharpoonup TW_{t,f}$: True live weight at week t
- $ightharpoonup Z_{t,f}$: True growth rate at time t
- ► V: System variances (constant) estimated by EM algorithm
- ▶ W: Observation variances (constant) estimated by EM algorithm



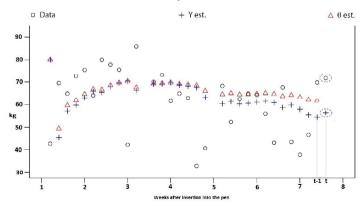




At time t we see an observation y_t :

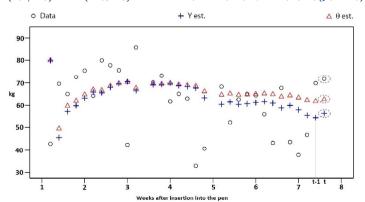


Given f_t and y_t we have that



Given f_t and y_t we have that

$$(\theta_t \mid D_t) \sim N(m_t, C_t)$$
 where, $m_t = G_t m_{t-1} + R_t F_t Q_t (y_t - f_t)$



Observation equations:

$$f(s_t^2|\eta_t) = \frac{\exp(\frac{-s_t^2(n_t-1)}{2\sigma_t^2})(\frac{n_t-1}{2\sigma_t^2})^{\frac{n_t-1}{2}}(s_t^2)^{\frac{n_t-3}{2}}}{\Gamma(n_t-1)}$$
$$g(\eta_t) = \sigma_t^2$$

where $g(x) = \frac{1}{x}$ System equations:

$$\sigma_t^2 = G_t \sigma_{t-1}^2$$

- $ightharpoonup s_t^2$: Sample variance of the live weights in pen.
- σ_t^2 : True variance of the live weight in the pen.

 $ightharpoonup n_t$: Number of pigs in the sample for s_t^2

Updating model - Validating the DLM

- ► To validate the DLM model, the observations were generated by a simulation approach and we supposed the true means are given in this step.
- ► The filtered data (output of the DLM model) show a good prediction of the true means of the live weight and the true means of the growth rate in the pen.
- ▶ Initial results indicate a good learning capability of the suggested DLM model.

