ntroduction and Context	OOOO	Computational Experiments	Conclusions and Future Work
UNIVERSIDAD DE LA REPORTCA URUGUAY			Centro Universitario Paysando

Facultad de Ingeniería, Universidad de la República Montevideo, Uruguay Centro Universitario de Paysandú, Universidad de la República Paysandú, Uruguay

Food Resources Allocation in Pastoral Dairy Production Systems

Héctor Cancela cancela@fing.edu.uy Gastón Notte (notteg@cup.edu.uy)

Pablo Chilibroste pchili@fagro.edu.uy Martín Pedemonte mpedemon@fing.edu.uy

Introduction and Context	Resolution Methods	Computational Experiments	Conclusions and Future Work
Overview			

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Introduction and Context

- Introduction
- Pastoral Systems
- Assignment Problems
- 2 Resolution Methods
 - Mathematical Formulations
 - Genetic Algorithms
- 3 Computational Experiments
 - Experiments
 - Results
- 4 Conclusions and Future Work
 - Conclusions
 - Future Work

Resolution Methods

Computational Experiments

Conclusions and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Introduction and Context

- Introduction
- Pastoral Systems
- Assignment Problems
- 2 Resolution Methods
 - Mathematical Formulations
 - Genetic Algorithms
- 3 Computational Experiments
 - Experiments
 - Results

4 Conclusions and Future Work

- Conclusions
- Future Work

Introduction and Context ●○○○○	Resolution Methods	Computational Experiments	Conclusions and Future Work
Introduction			

Importance of Dairy Production in Uruguay

- Important productive sector (9,3% GVP)
- Land area devoted to dairy (6%).
- Highest per capita producer in Latin America

Current Situation and Objective

- Current management.
- **Objective:** To maximize dairy production.
- The problem can be modeled as a combinatorial optimization problem.

Introduction and Context $\circ \circ \circ \circ \circ$

Resolution Methods

Computational Experiments 0000

Conclusions and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Pastoral Systems

Pastoral Dairy Production Systems

- World dairy production systems.
- Simple system: Production determined by individual production.
- Differences according to season. Using supplements.
- Uruguayan dairy production.

Introduction and Context $\circ \circ \bullet \circ \circ$

Resolution Methods

Computational Experiments

Conclusions and Future Work 000

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Assignment Problems

OR Applied to Agricultural Problems

- Least cost combination (Waugh, 1951)
- Individual components integration (Ridler et al., 2001)
- Most profitable mix of forage species (Neal et al., 2007)
- Effect of stocking rate (Macdonald et al., 2008)
- Post-grazing residual pasture mass model (Doole et al., 2012 y Doole et al., 2013)

Introduction and Context $\circ \circ \circ \circ \circ \circ$

Resolution Methods

Computational Experiments 0000

Conclusions and Future Work 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assignment Problems

Food Resources Allocation Problem

- Based pastoral systems with supplementation.
 - Supply structure.
 - Demand structure.
- Uruguay, two daily milkings.
- Proposed solution.
 - Dairy production model NRC-2001 (Correa, 2001)
 - Allocation model.

Resolution Methods

Computational Experiments

Conclusions and Future Work

Assignment Problems

Dairy production model NRC-2001

ae = ace - eReq(1) $ace = w \times cal$ (2) $potCons = (0,372 \times potencialProduction + 0,0968 \times bw^{0.75}) \times (1 - e^{-0,192 \times (lw+3,67)})$ (3) eReq = bReq + mReq(4) $bReq = 0,08 \times bw^{0,75}$ (5) $mReq = DistancelnKm \times 2 \times 0,00045 \times bw$ (6)

 $ENI = 0,0929 \times f + 0,0547 \times p + 0.192 \tag{7}$

production =
$$\frac{ae}{ENI}$$
 (8)

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへで

Introduction	and	Context

Resolution Methods

Conclusions and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

- Introduction and Context
 - Introduction
 - Pastoral Systems
 - Assignment Problems
- 2 Resolution Methods
 - Mathematical Formulations
 - Genetic Algorithms
- 3 Computational Experiments
 - Experiments
 - Results
- 4 Conclusions and Future Work
 - Conclusions
 - Future Work

Resolution Methods

Computational Experiments 0000

Conclusions and Future Work 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Mathematical Formulations

Resource Allocation Problem Formulations

- Single Basic Formulation considering one milking.
- Single Basic Formulation considering several milkings.
- Group Basic Formulation.

Resolution Methods ○●○○ Computational Experiments 0000

Conclusions and Future Work

Mathematical Formulation

Group Basic Formulation

$$\max \frac{\sum_{o} \sum_{z} (w_{oz} \times cal_{z} - y_{oz} \times (bReq + mReq_{z}))}{ENI}$$

Resolution Methods ○●○○ Computational Experiments

Conclusions and Future Work

Mathematical Formulation

Group Basic Formulation

$$max \frac{\sum_{o} \sum_{z} (w_{oz} \times cal_{z} - y_{oz} \times (bReq + mReq_{z}))}{ENI}$$

$$\sum_{z} y_{oz} = M \qquad \qquad \forall o \in O \quad (9a)$$

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲ 日 ▶

Resolution Methods $0 \bullet 00$

Computational Experiments

Conclusions and Future Work

Mathematical Formulation

Group Basic Formulation

$$max \frac{\sum_{o} \sum_{z} (w_{oz} \times cal_{z} - y_{oz} \times (bReq + mReq_{z}))}{ENI}$$

sa :

$$\sum_{z} y_{oz} = M \qquad \qquad \forall o \in O \quad (9a)$$
$$\sum_{o} w_{oz} \leq Food_{z} \qquad \qquad \forall z \in Z \quad (9b)$$

Resolution Methods $0 \bullet 00$

Computational Experiments

Conclusions and Future Work

Mathematical Formulation

Group Basic Formulation

$$max \frac{\sum_{o} \sum_{z} (w_{oz} \times cal_{z} - y_{oz} \times (bReq + mReq_{z}))}{ENI}$$

sa :

$$\sum_{z} y_{oz} = M \qquad \forall o \in O \quad (9a)$$

$$\sum_{o} w_{oz} \leq Food_{z} \qquad \forall z \in Z \quad (9b)$$

$$w_{oz} \leq y_{oz} \times potCons \qquad \forall o \in O, \forall z \in Z \quad (9c)$$

$$y_{oz} \in \mathbb{N}, w_{oz} \in \mathbb{R} \qquad \forall o \in O, \forall z \in Z$$

Introduction and Context	Resolution Methods ००●०	Computational Experiments	Conclusions and Future Work
Genetic Algori	thms		

Single Encoding

- Structure.
- Advantages.
- Selection, recombination y mutation.
- Initial population.
- Fitness function.

Introduction and Context	Resolution Methods ○○○●	Computational Experiments	Conclusions and Future Work
Genetic Algor	ithms		

Group Encoding

- Structure.
- Advantages.
- Selection, recombination y mutation.
- Correcting procedure.
- Fitness function.

Introduction	and	Context

Resolution Methods

Conclusions and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Introduction and Context

- Introduction
- Pastoral Systems
- Assignment Problems
- 2 Resolution Methods
 - Mathematical Formulations
 - Genetic Algorithms
- **3** Computational Experiments
 - Experiments
 - Results
- 4 Conclusions and Future Work
 - Conclusions
 - Future Work

Resolution Methods

Computational Experiments

Conclusions and Future Work 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Computational Experiments

Experiments

- Exact algorithms experimental analysis.
- Genetic algorithms experimental analysis (Calibration).
- Comparison between exact methods and genetic algorithms.

Resolution Methods

Computational Experiments $\circ \bullet \circ \circ$

Conclusions and Future Work 000

Computational Experiments

Scenario definition

- Execution platform.
- Dairy herd description.
- Food resources description.

Zone	Resources(Kg DM)	Zone	Resources(Kg DM)	Zone	Resources(Kg DM)
1	1100	1	11000	1	110000
2	1800	2	18000	2	180000
3	1800	3	18000	3	180000
4	4500	4	45000	4	450000
5	4500	5	45000	5	450000
	Scenario A		Scenario B		Scenario C
Zone	Resources(Kg DM)	Zone	Resources(Kg DM)		
1	110000	1	1100000		
2	180000	2	1800000		
3	180000	3	1800000		
4	450000	4	4500000		
5	4500000	5	4500000		
	Casparia D		Scopario E		

Resolution Methods

Computational Experiments $\circ \circ \circ \circ$

Conclusions and Future Work

Computational Experiments Exact Method vs GA

Resolution Methods

Computational Experiments $\circ \circ \circ \bullet$

Conclusions and Future Work

Computational Experiments Exact Method vs GA

・ロト・「聞下・《田下・《日下・《日下

Introduction	and	Context

Resolution Methods

Conclusions and Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Introduction and Context

- Introduction
- Pastoral Systems
- Assignment Problems
- 2 Resolution Methods
 - Mathematical Formulations
 - Genetic Algorithms

3 Computational Experiments

- Experiments
- Results

4 Conclusions and Future Work

- Conclusions
- Future Work

Resolution Methods

Computational Experiments 0000

Conclusions and Future Work $\bullet \circ \circ$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Conclusions and Future Work

Conclusions

- Exact method obtains good solutions in GBF.
- GA has very close values and provides more diversity in the solution structure.
- Computing time evolution.

Resolution Methods

Computational Experiments

Conclusions and Future Work $\circ \bullet \circ$

Conclusions and Future Work

Future Work - Modeling

- Extending the dairy model.
 - Heterogeneous model.
 - Agronomic approach.
 - Economic approach.
- Experimentation with other metaheuristics or heuristics.
- Incorporating an "intermediate model".

Future Work - Applications

- Compare solutions found over solutions implemented in current practice.
- Estimating forage method.

Resolution Methods

Computational Experiments

Conclusions and Future Work ○○●

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thank you for your attention!

Questions?