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1. Introduction.

There are many problems In economics,
engineering, operations management and
mathematics that give rise to highly structured
large optimization models.

Decomposition methods provide a numerical
optimization technique to solve them.



In the case of linear models, the matrix that
represent the different equations (Ax=b) could be
an sparse matrix where nonzero elements follow

a given pattern.

For example, A could be a block angular matrix:

[ A Ay Ay - /J,q'
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a dual block angular matrix:



https://www.google.cl/imgres?imgurl=http%3A%2F%2Fpatentimages.storage.googleapis.com%2FWO2006001015A2%2Fimgf000021_0001.png&imgrefurl=http%3A%2F%2Fwww.google.com%2Fpatents%2FWO2006001015A2%3Fcl%3Den&docid=rH0SdIm3MPcGSM&tbnid=J4oYMRhKuNqeKM%3A&w=535&h=403&ei=B9jWU7f0OPCY0QXGpoF4&ved=0CAIQxiAwAA&iact=c

The dual block angular form appears in two-stage

linear stochastic program with recourse (for a finite
number of S scenarios):

Min cx + p,glyt + p,g2y2+ -+ + psqSyS

s.a.
AX =b
TiIX + Wyl = ht
T2X + Wy? = h?
T°X + Wy =h°

x>0, y1>0, y2>0, ... y$>0.




For example, the capacity expansion of a themal
power system solved by Albornoz et al. (2004)
gives raise to this kind of model and particular

structure.




In Albornoz and Canales (2006), we use a
Lagrangean decomposition algorithm to solve a
two-stage stochastic nonlinear program that
provides a total allowable catch quota for
managing a particular fishery resource.




In Rodriguez et al. (2009) we proposed a two-
stage stochastic linear optimization model for
determining an optimal purchase and replacement

policy in a sow farm.




There exist highly structure large scale
optimization problems that contribute to obtain an
optimal solution to the decision maker.




To solve these optimization models, the
decomposition methods allow to tackle them in an
efficient way.

The seminal works in numerical optimization that
exploit these type of structures started to appear
around fifty years ago.



Dantzig & Wolfe Decomposition (1960) .
Benders Decomposition (1962).
Decomposition method of Rosen (1964).
Kaul’s algorithm (1965).

L-Shaped decomposition method of van Slyke & Wets (1969).
Generalized Benders Decomposition of Geoffrion (1972).
Simplicial decomposition of von Hohembalken (1977).
Cross Decomposition of van Roy (1983).

Horizontal Decomposition of Meijboom (1986).
Lagrangean decomposition of Guignard and Kim (1987).

Local Decomposition of van de Panne (1987).



Nested Decomposition, Robinson (1989).

Stochastic Decomposition, Higle and Sen (1991)

Lagrangean Decomposition, Michelon and Maculan (1991)
Column Generation in IP, Vanderveck and Wolsey (1996)
L-Shaped Method for IPSP, Caroe and Tind (1998),
Branch-and-price, Vanderveck (2000)

Benders and BFC for 0-1 mixed SP, Escudero et al. (2007).
Two-Stage Column Generation, Salani and Vacca (2008).
Stochastic Scenario Decomposition (MSSP), Higle et al. (2010)
Vertical Decomposition method, Verma et al. (2011).

Cluster Benders Decomposition, Aramburu et al. (2012).



To solve a complex problem by a decomposition
method, the basic idea Is:

decompose or simplify the resolution of the
original problem by solving a (reduced) master
problem and one subproblem, this last one
usually with a set of constraints that have a
special structure.




To Implement such idea In an algorithmic
framework, the strategy consist on sending
Information, such as dual prices and a feasible
solution, between the reduced master problem
and the subproblem until to reach the optimal
solution in a finite number of iterations.



These Ideas can also contribute to solve
problems in agriculture and food industry as we
will see in the application of a column generation
method for the management of a zone
delineation problem.
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2. The column generation method.

The first application of a decomposition method
was introduced by Gilmore y Gomory (1961,1963)
to solve a cutting problem, know as:

The Cutting-Stock Problem:
An Application of Integer Linear Programming

-



http://www.neos-guide.org/content/cutting-stock-problem

The Cutting-Stock Problem:
An Application of Integer Linear Programming
Notation.

L = width of the rolls

m = the number of orders

w; = width of pieces of order i=1,...,m

b, = total demand of order I=1,...,m

a; = number of rolls of width w; cut in pattern J, with
=1,....m, )=1,...,n

A=(@)i=1,...mj=1....n = Matrix with the set of patterns

al = j-th column of A



http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/cutting/index.html

Notice that a pattern j is feasible if and only If:
ayW, + ayWw, + -+ a,w, S L

If x; represents the number of roll cuts using pattern
]=1,...,n, a model that minimizes the number of rolls
cut subject to satisfy the demand requirement can
be formulated as follows:

Min X, + X,+ " + X,
s.a. aX;+ta X+ +a.x,2b 1=1,....m

X,20, X,20, ..., X,20, integer



Is possible to solve the model using the column
generation method, based on the idea that is not
necessary to know all the possible patterns for
finding an optimal solution of the LP relaxation of
the problem.

The method starts with an initial set of m patterns
that provides a basic feasible solution. For
example, we can consider a pattern j.

a;= L] if i=j and O otherwise, for j=1,...,m



Denoting by B the matrix that corresponds to the
given patterns, we can know If this basic feasible
solution is optimal iff the reduced cost satisfies:

1-cg™Btal=1-Aal >0

for each possible pattern j, which Is also
equivalent to verify:

- {1-Aai} >0

orifandonly it ~ maxg; ,{\a}=<1



~ortunately, it is not necessary to know all the
patterns to verify the previous condition because
oy solving the following Suproblem:

Max ATa
sa. aw,taw,+-+aw,SL
a > 0, integer.

If the optimal pattern a satisfies ATa < 1, then it will
be satisfy for all them and we get the optimal
solution of the problem. Otherwise, we add a new
pattern that will define a new b.f.s.



Modeling languages and optimization systems.

They allow to use common notation and familiar
concepts to develop an optimization model and
algorithms.

In an easy way you can read parameters,
communicate with an appropriate solver,
examine solutions and/or write programs for
running such algorithms.



A list of available modeling languages:

AIMMS
AMPL,
GAMS
LINGO
MPL

OPL Studio
PLAM
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http://www.ampl.com/
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NEQOS server for optimization *
http://www.neos-server.org/neos/ .

E. D. Dolan, R. Fourer, J. J. Moré, and T.S. Munson.
Optimization on the NEOS Server. SIAM News, Volume
35, Number 6, 2002.



http://www.neos-server.org/neos/
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3. An optimization model for determining
agricultural management zones.

In agriculture, the spatial variability of soll
properties i1s one of the important aspects that
determine productivity and crop quality.

Delineating the field Into  site-specific
management zones allows facing within-field
variability to design proper crop management
plans.



There are several approaches for properly
determine site-specific management zones:

- use of topographic maps
- yield maps from data of several seasons
- clustering methods based on soil samples
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In Cid-Garcia et al. (2013), we present a new
zoning method that optimally delineates
rectangular homogeneous management zones,
using relative variance as a measure of
homogeneity (Ortega and Santibanez, 2007).

Homogeneous. Heterogeneous.




Soill samples are usually generated from a
systematic grid sampling with the help of a
software (SMS Mobile) and a GPS recelver.
Sample positions are usually collected In
geographic coordinates using a GIS system.




The visualization of these data, for a given
property, iIs called a thematic map. The next
figures show two examples of them.
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The proposed solution delineates the most
homogeneous rectangular management zones
from a field, with respect to one or more soil
properties (converted to a soil quality index).

- - - 1




The method delineates rectangular management
zones based on an integer programming model
that provides a partition of the field, given a set
the potential zones (or quarters) within it.




The measurement of the effectiveness of a zoning
method Is based on the concept or relative
variance.

A lower relative variance implies a higher internal
homogeneity for the zones In which the field Is
partitioned.

Minimum number of quarters

a 0.2 04 0.6 0.8 1

Maximum Relative variance




The relationship between relative variance (1-a)
and the resulting number of management zones,
for the OM soil property:
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The following notation was used:

M = the set of potential management zones

S =the set of soil samples in the field

o,” = the variance of management zone zeM

n, =the number of samples in the potential zone zeM
c,.=1 if zone z includes sample point s, ¢,.=0 otherwise.
LS = a maximum number of zones in the partition
o+* = the variance of the field

1-a = upper bound for the relative variance



The decision variable of the model is:
g, = 1 if the potencial management zone zeM is
part of the partition and O otherwise,

The proposed model is as follows:

min 3" a. (1
zeZ
Z CisGs = Vse S (2)
zelZ
Y g XIS (3)

ZZEZ (nz = 1)0-3
0-2’_ [N & ZZEZ qz]

g- €4{0,1} VzeM

<(1-a) (4)




The proposed model Is an Integer linear
programming model because the last constraint
can be easily put into a linear form.

A complete enumeration of the set of potential
zones allows to find the optimal solution of the
problem but this alternative is not efficient when
we are facing large instances of the problem.



We solve a linear relaxation of model (1)-(4)
based on a column generation strategy.

The resulting Subproblem provides a rectangular
management zones according to a binary
decision variable x, that take the value 1 If

sample point s belong the propose management
zone and O otherwise.



Parameters
ps: Value of the dual variable associated to the partitioning constraint (2).
w: Value of the dual variable associated to constraint (3).

coef,: Value of the dual variable associated to the Relative Variance con-
straint (4).

ds: Sample point s value.

Compact Formulation

minl — Z psxs —w — coefy [(n; —1) o2 (x) + (1 —a)ot]  (5)
seS

Xs€X (6)
xs€{0, 1}




We studied four different implementations of the
algorithm based on the form in which we solve
the subproblem. They can be classified according
to their purpose:

Strategies | and Il: Avoid solving the pricing problem to optimality. This
is used as an initial approach to the optimal solution.

Strategies Il and IV: Prove optimality for MP by solving the pricing
problem to optimality.



Strategies | and ||

We apply this algorithm to the initial RMP. At each iteration of the CG
algorithm, we fix a size (determined by some number of adjacent rows
and columns) for the quarters to be considered, and then price them by
enumeration.

If a new potential quarter with negative reduced cost is found, we add it
to the column pool, until a predefined maximum number of columns per
iterations is reached.

Strategy |: potential quarters are explored in ascending size order.
Strategy ll: potential quarters are explored in descending size order.

When all possible quarter sizes are covered, this algorithm stops.



Strategies Ill and IV

These strategies are applied once the algorithm associated to Strategy | or
|l has finished.

At each iteration of the CG algorithm, the pricing problem is solved to
optimality.

Strategy lll: the column with the lowest reduced cost is added to RMP.

Strategy IV: a set of columns is added to RMP, which includes the one
with the lowest reduced cost.

We included an early termination criterion, which allows us to use the
optimal solution of the pricing problem to compute a lower bound on the
optimal solution of MP.



Computational experiences include 10 instances. The
smaller one consider a vineyard close to Santiago of Chile
(around 7.82 ha), that has a total of 42 soil samples.

Quilaco_99 by MO
W os (1)
A 103 (1)
B 05
B w07 (1}
O 1.1y
1.2 (2)
B s ()
B 150
B 17 ()
B 181
B2 1y
B 25
126 (2)
O 127 (1)
B 135 (1)
0 138 (1)
O 139 (1)
0% ()
B 41
B w20
B 1301
B 144 (1)
B 15 (1)
B «7 (1
0 143 (1)
0 19 (1)
A1 (1)
0 151 (1)




The algorithm were coded in AMPL. The resulting
linear and integer problems were solved with
Cplex 12.4. An Intel core 15 of 2.5 GHz with 8 GB
of RAM was used for this research.

Instance N K Time[s]  Optimal Value

1 42 588 0.48 10
2 100 3,025 11.52 22
3 150 6,600 106.14 24
— 225 14,400 1,468.62 34
5 300 25,200 8,761.71 47
6 400 44,100 47,654.8 58
7 500 68,250 - E

8 600 97,650 - -

9 750 151,125 - E

—
o

000 216,225 - -




Results for Strategy |:

Instance  #col UB gap IS timels]

—

148 9.07 0.02 10 0.64
401 23.59 0.13 24 2:12
609 3461 0.46 35 5.41
1,109 36.88 0.11 37 25.63
1470 3563 023 b7 58.67
2,101 68.48 0.20 69 152.44
2,443 9837 029 99 2438.14
3,048 109.93 0.30 110 463.67
3,820 138.2 031 139 891.75
4,651 14499 0.17 146 1,540.15
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Results for Strategy II:

Instance  #col UB gap IS  timels]

1 161 8.93 0.00 10 0.89

2 433 2238 0.07 23 2.96

3 726 2512 0.06 26 10

4 1,178 3499 0.05 36 33

5 1,730 47.09 0.03 48 99.96
6 2,330 59.19 0.03 60 228.17
7 3,115 80.75 0.06 82 482.42
8 3,738 89.94 0.06 91 720.72
9 4916 112 0.06 113 1,681.48

p—
o

5,198 1343 0.08 135 2,296.13




Results for Strategy lll:

Instance  #col UB LB % gap IS ISLB  time [s]

1 172 8.89 8.89  450E-14 10 9 1.21
479 21.08  20.68 1.9 22 21 8.28
810 23.7F 2332 1.9 24 24 33.79

1,317 33.24  32.62 1.84 34 33 130.95
1,838 46.62  45.82 1.73 47 46 255.14
2,579 57.52 56.41 1.94 58 57 934.17
3,211 T16.51 75.2 112 7 76 1,295.44
4,172 8456  82.97 1.87 85 83 4,254.71
5,550 106.59 104.58 1.89 107 105 10,766.00
6,095 12433 122.04 1.84 125 123 19,268.80
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Results for Strategy 1V:

Instance  #col UB LB % gap IS ISLB  time [s]

1 188 38.89 8.89 450E-14 10 9 1.01

2 636 21.08  20.86 1.05 22 21 5.31

3 981 23.77 2377 9.71E-14 24 24 17.17
4 1,700 33.23 3323 187E-13 34 34 66.23
5 2,111 465 45.71 1.69 47 46 146.47
6 3,229 5752 57.21 0.53 58 429.56
7 3,862 76.51 76.51 1.83E-13 77 I 743.093
8 5,160 8456 8456 293E-13 &f 85 1,434.66
9 7,061 106.59 105.21 1.3 107 106  3,395.15

—
O

8,794 12433 12433 6.00E-13 125 125 6,061.11
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4. Conclusions

We present a new zoning method that optimally
delineates rectangular homogeneous management
zones. Experimental results showed that the proposed
methodology enabled a contribution to this problem.

Decomposition methods provide a numerical
optimization technique that allows to solve large scale
optimization problems.
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